This study investigates the efficacy of eight bacterial strains in controlling root rot of cotton caused by Fusarium oxysporum f in salinated soil conditions. Cotton seedlings are highly susceptible to soil-borne fungal pathogens, leading to significant crop losses despite the use of fungicides. The bacterial isolates were sourced from cotton rhizosphere soils and evaluated for their biocontrol potential. The experiment involved inoculating cotton seeds with bacterial suspensions and growing them in Fusarium-infested salinated soil. Results showed that four bacterial isolates, Pseudomonas chlororaphis TSAU13, Pseudomonas putida TSAU1, Pseudomonas putida 1T1, and Pseudomonas extremorientalis TSAU20, significantly reduced disease incidence by up to 75% compared to the control. These findings highlight the potential of specific bacterial strains as effective biocontrol agents against cotton root rot, offering a sustainable alternative to chemical fungicides. Further research is warranted to explore the genetic diversity of biocontrol microorganisms and their adaptation to specific agricultural environments.
References
Baker K.F., Cook R.J. Biological control of plant pathogens. – San Francisco: Freeman, 1974. –P. 433.
Cakmakci R., Donmez D., Aydın A., Sahin F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions // Soil Biol. Bioch. 2005. – V. 38. – P. 1482-1487.
Kiely P.D., Haynes J.M., Higgins C.H., Franks A., Mark G.L., Morrissey J.P., O‘Gara F. Exploiting New Systems-Based strategies to elucidate plantbacterial interactions in the rhizosphere // Microbial ecology. - 2006. – V. 51. – P. 257-266.
Fravel D. R. Commercialization and Implementation of biocontrol // Annual Review of Phytopathology. - 2005. – V. 43. – P. 337-359.
Folman L.B., Postma J., van Veen J.A. Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits // Microb. Ecol. - 2003. – V. 45. – № 1. – P. 72-87.
Haas D., Keel C., Reimmann C. Signal transduction in plant-beneficial rhizobacteria with biocontrol properties // Antonie Van Leeuwenhoek. - 2002. – V. 81. – № 1-4. – P. 385-395.
Berg G., Roskot N., Steidle A., Eber L., Zock A., Smalla K. Plantdependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants // Applied and Environmental Microbiology. - 2002. – V. 68. – P. 3328-3338.
Lugtenberg B.J.J., Kamilova F.D. Rhizosphere management: microbial manipulation for biocontrol. In: “Encyclopedia of plant and crop science” (edited by Goodman, R.M.). Marcel Dekker. Inc. – New York, 2004. – P. 1098-1101.
Isebaert S., Verhoeven R., Haesaert G. Disease control by means of induced resistance // Meded. Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet.- 2002. – V. 67. – № 2. – P. 159-164.
Kumar V., Kumar A., Kharwar R.N. Antagonistic potential of fluorescent pseudomonads and control of charcoal rot of chickpea caused by Macrophomina phaseolina // J. Environ. Biol. - 2007. – V. 28. – № 1. – P. 15-20.
Safiyazov J., Mannanov R., Sattarova R. The use of bacterial antagonists for the control of cotton diseases // Field Crops Research. – 1995. - V 43. – P 51-54.
Hallmann J., Quadt-Hallmann A., Miller W.G., Sikora R.A., Lindow S.E. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection // Phytopathology. - 2001. – V. 91. – № 4. – P. 415-422.
Chen C., Bauske E.M., Musson G., Rodríguez-Kábana R., Kloepper J.W. Biological control of Fusarium wilt on cotton by use of endophytic bacteria // Biological Control. - 1995. – V. 5. – P. 83–91.
Berg G., Fritze A., Roskot N., Smalla K. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb // J. Appl. Microbiol. - 2001. – V. 91. – № 6. – P. 963-971
Schippers B.A., Bakker A.W., Bakker P.H.M. Interactions of deleterious and benificial rhizosphere microorganisms and the effect of cropping practices // Annu. Rev. Phytopathol. - 1987. – V. 25. – P. 339–358.
Kamilova F., Kravchenko L.V., Shaposhnikov A.I., Azarova T., Makarova N., Lugtenberg B. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria // Mol. Plant Microbe Interact. - 2006. – V. 19. – № 3. – P. 250-256.
Adesina M.F., Lembke A., Costa R., Speksnijder A., Smalla K. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site-dependent composition and diversity revealed // Soil Biology and Biochemistry. - 2007. – V. 39. – P. 2818-2828.
Chin-A-Woeng T.F.C., Bloemberg G.V., van der Bij A.J. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL 1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici // Molecular Plant-Microbe Interactions. - 1998. – V. 11. – P. 1069 – 1077.
Sampathkumar, A., Eraivan Arutkani Aiyanathan, K., Nakkeeran, S., & Manickam, S. (2023). Multifaceted Bacillus spp. for the management of cotton bacterial blight caused by Xanthomonas citri pv. malvacearum. Biological Control: Theory and Applications in Pest Management, 177(105111), 105111. https://doi.org/10.1016/j.biocontrol.2022.105111
Cheng, F., Li, G., Peng, Y., Wang, A., & Zhu, J. (2020). Mixed bacterial fermentation can control the growth and development of Verticillium dahliae. Biotechnology, Biotechnological Equipment, 34(1), 58–69. https://doi.org/10.1080/13102818.2020.1713023
Mohamad, O. A. A., Liu, Y.-H., Li, L., Ma, J.-B., Huang, Y., Gao, L., Fang, B.-Z., Wang, S., El-Baz, A. F., Jiang, H.-C., & Li, W.-J. (2022). Synergistic plant-microbe interactions between endophytic Actinobacteria and their role in plant growth promotion and biological control of cotton under salt stress. Microorganisms, 10(5), 867. https://doi.org/10.3390/microorganisms10050867
Li B., Xie G.L., Soad A., Coosemans J. Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria // J. Zhejiang. Univ Sci. - 2005. – V. 66. – P. 496-501.
Liu Y.H., Huang C.J., Chen C.Y. Evidence of induced systemic resistance against Botrytis elliptica in lily // Phytopathology. - 2008. – V. 98. – №7. – P. 830-836.
Rabbee, M. F., Hwang, B. S., & Baek, K. H. (2023). Bacillus velezensis: A Beneficial Biocontrol Agent or Facultative Phytopathogen for Sustainable Agriculture. Agronomy, 13.
Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., Rajer, F. U., & Gao, X. (2017). Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17(1), 133. https://doi.org/10.1186/s12870-017-1083-6
Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845
Naqvi, S. A. H., Iqbal, S., Hafeez-Ur-Rehman, Farooq, U., Hassan, M. Z., Shahid, M. N., Noor Shah, A., Abbas, A., Mubeen, I., Farooq, A., Ghareeb, R. Y., Kalaji, H. M., Alrefaei, A. F., & Ahmed, M. A. A. (2022). Evaluation of bacterial perpetuation assays and plant biomolecules antimicrobial activity against cotton blight bacterium Xanthomonas citri subsp. Malvacearum; An alternative source for food production and protection. Plants, 11(10), 1278.
Barriuso J., Solano B. R., Gutierrez Manero F. J. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana // Phytopathology. - 2008. – V. 98. – № 6. – P. 666-672.
Zaki K., Misaghi I.J., Heydari A., Shatla M.N. Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia // Plant Dis. - 1998. – V. 82. – P. 291–293.
Wang C., Wang D., Zhou Q. Colonization and persistence of a plant growthpromoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings // Can. J. Microbiol. - 2004. – V. 50. – P. 475–481.