ИЗУЧЕНИЕ ЦИС-ЭЛЕМЕНТНЫХ РЕГИОНОВ ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА ГЕНОВ GhFHY3/FAR1 У ХЛОПЧАТНИКА (G.HIRSUTUM L.)
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss5/a132Ключевые слова:
Gossypium hirsutum L., CRM, FHY3/FAR1, белок.Аннотация
Рост и развитие растений происходят в результате формирования сложной сети генов, присутствующих в их геноме. Такие сложные взаимодействия приводят к морфологическому совершенствованию растений. Существует несколько способов взаимодействия генов, и одним из таких механизмов являются Cis-Acting Elements (CAE) или цис-регуляторные модули (CRM). Изучение функций CRM является важным инструментом для исследования экспрессии генов. Несмотря на достижения в области высококачественного секвенирования и аннотации растительных геномов с использованием современных технологий, идентификация CRM, понимание их функций и роли в регуляции генной экспрессии остаются недостаточно изученными. В данной статье были проведены in silico биоинформационные исследования по выявлению CRM в транскриптах представителей семейства генов GhFHY3/FAR1 у хлопчатника (Gossypium hirsutum L.). Результаты in silico анализа транскриптов показали, что представители этого семейства участвуют в регуляции экспрессии генов, контролирующих световую сигнализацию и гормональные системы, включая гиббереллины, ауксины и цитокинины. Эти гормональные системы регулируют не только рост и развитие растений, но и механизмы устойчивости к абиотическим и биотическим факторам. Полученные результаты указывают, что выявленные CRM в транскриптах представителей семейства GhFHY3/FAR1 хлопчатника (G. hirsutum L.) играют роль в регуляции механизмов устойчивости растений к неблагоприятным условиям.
Библиографические ссылки
1. Wen-hai Feng, Eva Westphal, Amy Mauser, Nancy Raab-Traub, Margaret L Gulley, Pierre Busson, Shan-non C Kenney. Use of Adenovirus Vectors Expressing Epstein-Barr Virus (EBV) Immediate-Early Protein BZLF1 or BRLF1 To Treat EBV-Positive Tumors. J Virol. 2002 Nov;76(21):10951–10959. doi: 10.1128/JVI.76.21.10951-10959.2002.
2. A.P. Marand, A.L. Eveland, K. Kaufmann, N.M. Springer cis-Regulatory Elements in Plant Development, Adaptation, and Evolution Annu. Rev. Plant Biol., 74 (2023), pp. 111-137, 10.1146/annurev-arplant-070122-030236.
3. A.M. Sullivan, A.A. Arsovski, J. Lempe, K.L. Bubb, M.T. Weirauch, P.J. Sabo, R. Sandstrom, R.E. Thurman, S. Neph, A.P. Reynolds, et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thali-ana Cell Rep., 8 (2014), pp. 2015-2030, 10.1016/j.celrep.2014.08.019.
4. D. Chen, W. Yan, L.Y. Fu, K. Kaufmann. Architecture of gene regulatory networks controlling flower devel-opment in Arabidopsis thaliana Nat. Commun., 9 (2018), pp. 4534-4613, 10.1038/s41467-018-06772-3.
5. A. Gaudinier, J. Rodriguez-Medina, L. Zhang, A. Olson, C. Liseron-Monfils, A.M. Bågman, J. Foret, S. Abbitt, M. Tang, B. Li, et al. Transcriptional regulation of nitrogen-associated metabolism and growth Nature, 563 (2018), pp. 259-264, 10.1038/s41586-018-0656-3.
6. K.A. Maher, M. Bajic, K. Kajala, M. Reynoso, G. Pauluzzi, D.A. West, K. Zumstein, M. Woodhouse, K. Bubb, M.W. Dorrity, et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell, 30 (2018), pp. 15-36, 10.1105/tpc.17.00581.
7. Xu, X.; Mo, Q.; Cai, Z.; Jiang, Q.; Zhou, D.; Yi, J. Promoters, Key Cis-Regulatory Elements, and Their Poten-tial Applications in Regulation of Cadmium (Cd) in Rice. Int. J. Mol. Sci. 2024, 25, 13237. https://doi.org/10.3390/ijms252413237.
8. Passricha N, Saifi S, Ansari MW and Tuteja N, 2016. Prediction and validation of cis-regulatory elements in 5′ upstream regulatory regions of lectin receptor-like kinase gene family in rice. Protoplasma 1-16.
9. Liang Y, Tan ZM, Zhu L, Niu Q K, Zhou JJ, Li M and Ye D, 2013. MYB97, MYB101 and MYB120 function as male factors that control pollen tubesynergid interaction in Arabidopsis thaliana fertilization. PLoS Genet. 9(11): e1003933.
10. Lenka S and Bansal KC, 2019. Abiotic stress responsive cis-regulatory elements (CREs) in rice (Oryza sa-tiva L.) and other plants. Plant J. 13: 145-158
11. Vulavala VK, Fogelman E, Rozental L, Faigenboim A, Tanami Z, Shoseyov O and Ginzberg, 2017. Identi-fication of genes related to skin development in potato. Plant Mol.Biol. 23:1-14.
12. Ma L and Li G. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) Family Proteins in Arabidopsis Growth and Development. Front. Plant Sci. 9:692. (2018). doi: 10.3389/fpls.2018.00692
13. Wang, F.; Wang, X.; Zhang, Y.; Yan, J.; Ahammed, G.J.; Bu, X.; Sun, X.; Liu, Y.; Xu, T.; Qi, H.; et al. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in to-mato. New Phytol. 2022, 233, 2127–2143.
14. Chen, Y.; Deng, J.; Chen, J.; Zeng, T.; Yu, T.; Huang, Q.; Chen, P.; Liu, Q.; Jian, W.; Yang, X. Genome-wide identification and expression analysis of FAR1/FHY3 transcription factor family in tomato. Plant Physiol. J. 2021, 57, 1983–1995.
15. Li, X.; Li, Y.; Qiao, Y.; Lu, S.; Yao, K.; Wang, C.; Liao, W. Genome-Wide Identification and Expression Anal-ysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.). Agronomy 2024, 14, 50. https://doi.org/10.3390/agronomy14010050
16. Zhang, S.; Xu, F.; Zhang, Y.; Lin, J.; Song, C.; Fang, X. Fine mapping and candidate gene analysis of a novel PANICLE AND SPIKELET DEGENERATION gene in rice. Euphytica 2015, 206, 793–803.
17. Kiseleva, A.A.; Potokina, E.K.; Salina, E.A. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC Plant Biol. 2017, 17, 172.
18. Liu, Z.; An, C.; Zhao, Y.; Xiao, Y.; Bao, L.; Gong, C.; Gao, Y. Genome-Wide Identification and Characteriza-tion of the CsFHY3/FAR1 Gene Family and Expression Analysis under Biotic and Abiotic Stresses in Tea Plants (Ca-mellia sinensis). Plants 2021, 10, 570.
19. Dai, J.; Sun, J.; Peng, W.; Liao, W.; Zhou, Y.; Zhou, X.R.; Qin, Y.; Cheng, Y.; Cao, S. FAR1/FHY3 Transcrip-tion Factors Positively Regulate the Salt and Temperature Stress Responses in Eucalyptus grandis. Front. Plant Sci. 2022, 13, 883654.
20. Zeps, M.; Kondratovičs, T.; Grigžde, E.; Jansons, Ā.; Zeltiņš, P.; Samsone, I.; Matisons, R. Plantlet Anatomy of Silver Birch (Betula pendula Roth.) and Hybrid Aspen (Populus tremuloides Michx. × Populus tremula L.) Shows Intraspecific Reactions to Illumination In Vitro. Plants 2022, 11, 1097. https://doi.org/10.3390/plants11081097.
21. Wang, X.; Liu, S.; Zuo, H.; Zheng, W.; Zhang, S.; Huang, Y.; Pingcuo, G.; Ying, H.; Zhao, F.; Li, Y.; et al. Ge-nomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr. Biol. 2021, 31, 3848–3860.e8.
22. Du, J.; Zhang, L.; Ge, X.; Xiang, X.; Cao, D.; Yang, H.; Hu, J. Genome-Wide Identification and Characteriza-tion of the FAR1/FHY3 Family in Populus trichocarpa Torr. & Gray and Expression Analysis in Light Response. Forests 2021, 12, 1385. https://doi.org/10.3390/f12101385
23. Yuan, N.; Wang, T.; Liu, T.; Yang, Y.; Du, J. Genome-wide analysis of the FAR1/FHY3 gene family in Cot-ton. Cott. Sci. 2018, 14, 1–11.
24. Yao, H. Zheng, Y. Sun, Y. Liu, Y. Genome-Wide Identification and Expression Analysis of the FAR1-RELATED SEQUENCE (FRS) Gene Family in Grape (Vitis vinifera L.). Int. J. Mol. Sci. 2025, 26, 4675. https://doi.org/10.3390/ijms26104675
25. Huaijun Tang, De Jing 2, Cheng Liu, Xiaoqing Xie, Lei Zhang, Xunji Chen, Changyu Li. Genome-Wide Identification and Expression Analyses of the FAR1/FHY3 Gene Family Provide Insight into Inflorescence Develop-ment in Maize. Curr Issues Mol Biol. 2024 Jan 2;46(1):430–449. doi: 10.3390/cimb460107
26. Lescot, M.; Dehais, P.; Thijs, G.; Januaryal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. Plant-CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter se-quences. Nucleic Acids Res. 2002, 30, 325–327.
27. Chen et al.Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant. 2023a;16(11):1733–1742. doi: 10.1016/j.molp.2023.09.010.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Научный вестник Ферганский государственный университета

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
Как цитировать
Наиболее читаемые статьи этого автора (авторов)
- Usmanov Dilshod Erkinbaevich, Аbdukarimov Sharofiddin Sayfidinovich, Sobirov Botirjon Masharif o‘g‘li, Azimov Avazxon Abbasovich, Abdug‘afforov Azamat Tojiboy o‘g‘li, Juraqulov Durbekjon Saydulla o‘g‘li, Buriev Zabardast Tojiboevich, ХАРАКТЕРИСТИКА ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА ГЕНОВ GHFHY3/FAR1 У ХЛОПЧАТНИКА (G.HIRSUTUM L.) , Научный вестник Ферганский государственный университета: № 5 (2025): FarDu ilmiy xabarlar jurnali (TABIIY FANLAR)
- Usmanov Dilshod Erkinbayevich, Аbdukarimov Sharofiddin Sayfidinovich, Sobirov Botirjon Masharif o‘g‘li, Azimov Avazxon Abbasovich, Abdug‘afforov Azamat Tojiboy o‘g‘li, Juraqulov Durbekjon Saydulla o‘g‘li, Buriev Zabardast Tojiboevich, ИДЕНТИФИКАЦИЯ ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА ГЕНОВ GHFHY3/FAR1 У ВИДОВ ХЛОПЧАТНИКА (GOSSYPIUM SPP) С ИСПОЛЬЗОВАНИЕМ СРАВНИТЕЛЬНО-ГО БИОИНФОРМАТИЧЕСКОГО АНАЛИЗА , Научный вестник Ферганский государственный университета: № 5 (2025): FarDu ilmiy xabarlar jurnali (TABIIY FANLAR)