logo
O‘zbekcha

CHARACTERIZATION OF GHFHY3/FAR1 GENE FAMILY MEMBERS IN UPLAND COT-TON (G.HIRSUTUM L.)

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss5/a130

Keywords:

G. hirsutum, FAR, protein, FHY3/FAR1, PhyA, gene, genome

Abstract

Light is one of the critical environmental factors influencing plant growth. In plants, light response is mainly regulated by three types of photoreceptor genes: phytochromes, cryptochromes, and UV-B photoreceptors. Among these groups, phytochromes play a particularly important role. These receptors perceive red and far-red light and subsequently regulate numerous downstream transcription factors either directly or indirectly, thereby influencing seed germination, stem elongation, leaf expansion, flowering, and early maturation processes.

The downstream transcription factors include members of the FAR1-RELATED SEQUENCE1 (FAR1) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3) gene family (FHY3/FAR1), which are believed to have originated from transposases. Members of the FHY3/FAR1 gene family have been studied in various crop species, and their amino acid sequences have been characterized in detail.

In this study, we analyzed the amino acid sequences of FHY3/FAR1 gene family members present in the genome of upland cotton (Gossypium hirsutum L.). Their individual characteristics—including coding DNA sequences (CDS), amino acid sequences, subcellular localization, and physiological and biochemical properties—were identified and described.

Author Biographies

  • Usmanov Dilshod Erkinbaevich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi PhD

  • Аbdukarimov Sharofiddin Sayfidinovich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Sobirov Botirjon Masharif o‘g‘li, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Azimov Avazxon Abbasovich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Abdug‘afforov Azamat Tojiboy o‘g‘li, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Juraqulov Durbekjon Saydulla o‘g‘li, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi, stajyor-tadqiqotchi

  • Buriev Zabardast Tojiboevich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi. b.f.d. prof.

     

References

1. Heijde, M.; Ulm, R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012, 17, 230–237.

2. Voitsekhovskaja, O.V. Phytochromes and other (photo)receptors of information in plants. Russ. J. Plant Physiol. 2019, 66, 351–364.

3. Li, F.W.; Rothfels, C.J.; Melkonian, M.; Villarreal, J.C.; Stevenson, D.W.; Graham, S.W.; Wong, G.K.; Mathews, S.; Pryer, K.M. The origin and evolution of phototropins. Front. Plant Sci. 2015, 6, 637.

4. Ma L and Li G (2018) FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) Family Pro-teins in Arabidopsis Growth and Development. Front. Plant Sci. 9:692. doi: 10.3389/fpls.2018.00692

5.Wang, H.; Wang, H. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends Plant Sci. 2015, 20, 453–461.

6. Whitelam, G. C., Johnson, E., Peng, J., Carol, P., Anderson, M. L., Cowl, J. S., et al. Phytochrome A null mu-tants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5,(1993)., 757–768. doi: 10.1105/tpc.5.7.757.

7. Desnos, T., Puente, P., Whitelam, G. C., and Harberd, N. P. FHY1: a phytochrome A-specific signal trans-ducer. Genes Dev. (2001). 15, 2980–2990. doi: 10.1101/gad.205401.

8. Hiltbrunner, A., Viczian, A., Bury, E., Tscheuschler, A., Kircher, S., Toth, R., et al. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr. Biol. (2005). 15, 2125–2130. doi: 10.1016/j.cub.2005.10.042.

9. Zhou, Q., Hare, P. D., Yang, S. W., Zeidler, M., Huang, L. F., and Chua, N. H.. FHL is required for full phyto-chrome A signaling and shares overlapping functions with FHY1. Plant J. 43, (2005). 356–370. doi: 10.1111/j.1365-313X.2005.02453.x.

10. Hudson, M., Ringli, C., Boylan, M. T., and Quail, P. H. The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13, (1999). 2017–2027. doi: 10.1101/gad.13.15.2017.

11. Wang, H., and Deng, X. W. Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21, (2002). 1339–1349. doi: 10.1093/emboj/21.6.1339.

12. Lin, R., Ding, L., Casola, C., Ripoll, D. R., Feschotte, C., and Wang, H. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, (2007). 1302–1305. doi: 10.1126/science.1146281

13. Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X. Y., Li, J., et al. Coordinated transcriptional regulation underly-ing the circadian clock in Arabidopsis. Nat. Cell Biol. 13, (2011). 616–622. doi: 10.1038/ncb2219

14. Li, D., Fu, X., Guo, L., Huang, Z., Li, Y., Liu, Y., et al. FAR-RED ELONGATED HYPOCOTYL3 activates SEP-ALLATA2 but inhibits CLAVATA3 to regulate meristem determinacy and maintenance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113, (2016). 9375–9380. doi: 10.1073/pnas.1602960113

15. Ouyang, X., Li, J., Li, G., Li, B., Chen, B., Shen, H., et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23, (2011). 2514–2535. doi: 10.1105/tpc.111.085126

16. Tang, W., Wang, W., Chen, D., Ji, Q., Jing, Y., Wang, H., et al. Transposase-derived proteins FHY3/FAR1 in-teract with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 dur-ing deetiolation in Arabidopsis. Plant Cell 24, (2012). 1984–2000. doi: 10.1105/tpc.112.097022

17. Ma, L., Xue, N., Fu, X., Zhang, H., and Li, G. Arabidopsis thaliana FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) modulate starch synthesis in response to light and sugar. New Phytol. 213, (2017). 1682–1696. doi: 10.1111/nph.14300

18. Tang, W., Ji, Q., Huang, Y., Jiang, Z., Bao, M., Wang, H., et al. (2013). FAR-RED ELONGATED HYPOCOT-YL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Ara-bidopsis. Plant Physiol. 163, 857–866. doi: 10.1104/pp.113.224386

19. Ma, L., Tian, T., Lin, R., Deng, X. W., Wang, H., and Li, G. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol. Plant 9, (2016). 541–557. doi: 10.1016/j.molp.2015.12.013

20. Wang, W., Tang, W., Ma, T., Niu, D., Jin, J. B., Wang, H., et al. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. J. Integr. Plant Biol. 58, (2016). 91–103. doi: 10.1111/jipb.12369

21. Lin, R., and Wang, H. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 136, (2004). 4010–4022. doi: 10.1104/pp.104.052191

22. Aguilar-Martinez, J. A., Uchida, N., Townsley, B., West, D. A., Yanez, A., Lynn, N., et al. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis de-termines gene function in the shoot apex. Plant Physiol. 167, (2015). 424–442. doi: 10.1104/pp.114.248625

23. Chen, Q., Song, Y., Liu, K., Su, C., Yu, R., Li, Y., Yang, Y., Zhou, B., Wang, J., & Hu, G. (2023). Genome-Wide Identification and Functional Characterization of FAR1-RELATED SEQUENCE (FRS) Family Members in Potato (Solanum tuberosum). Plants, 12(13), 2575. https://doi.org/10.3390/plants12132575

24. Wang, F.; Wang, X.; Zhang, Y.; Yan, J.; Ahammed, G.J.; Bu, X.; Sun, X.; Liu, Y.; Xu, T.; Qi, H.; et al. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in to-mato. New Phytol. 2022, 233, 2127–2143.

25. Chen, Y.; Deng, J.; Chen, J.; Zeng, T.; Yu, T.; Huang, Q.; Chen, P.; Liu, Q.; Jian, W.; Yang, X. Genome-wide identification and expression analysis of FAR1/FHY3 transcription factor family in tomato. Plant Physiol. J. 2021, 57, 1983–1995.

26. Li, X.; Li, Y.; Qiao, Y.; Lu, S.; Yao, K.; Wang, C.; Liao, W. Genome-Wide Identification and Expression Anal-ysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.). Agronomy 2024, 14, 50. https://doi.org/10.3390/agronomy14010050

27. Zhang, S.; Xu, F.; Zhang, Y.; Lin, J.; Song, C.; Fang, X. Fine mapping and candidate gene analysis of a novel PANICLE AND SPIKELET DEGENERATION gene in rice. Euphytica 2015, 206, 793–803.

28. Kiseleva, A.A.; Potokina, E.K.; Salina, E.A. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC Plant Biol. 2017, 17, 172.

29. Liu, Z.; An, C.; Zhao, Y.; Xiao, Y.; Bao, L.; Gong, C.; Gao, Y. Genome-Wide Identification and Characteriza-tion of the CsFHY3/FAR1 Gene Family and Expression Analysis under Biotic and Abiotic Stresses in Tea Plants (Ca-mellia sinensis). Plants 2021, 10, 570.

30. Dai, J.; Sun, J.; Peng, W.; Liao, W.; Zhou, Y.; Zhou, X.R.; Qin, Y.; Cheng, Y.; Cao, S. FAR1/FHY3 Transcrip-tion Factors Positively Regulate the Salt and Temperature Stress Responses in Eucalyptus grandis. Front. Plant Sci. 2022, 13, 883654.

31. Zeps, M.; Kondratovičs, T.; Grigžde, E.; Jansons, Ā.; Zeltiņš, P.; Samsone, I.; Matisons, R. Plantlet Anatomy of Silver Birch (Betula pendula Roth.) and Hybrid Aspen (Populus tremuloides Michx. × Populus tremula L.) Shows Intraspecific Reactions to Illumination In Vitro. Plants 2022, 11, 1097. https://doi.org/10.3390/plants11081097.

32. Wang, X.; Liu, S.; Zuo, H.; Zheng, W.; Zhang, S.; Huang, Y.; Pingcuo, G.; Ying, H.; Zhao, F.; Li, Y.; et al. Ge-nomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr. Biol. 2021, 31, 3848–3860.e8.

32. Du, J.; Zhang, L.; Ge, X.; Xiang, X.; Cao, D.; Yang, H.; Hu, J. Genome-Wide Identification and Characteriza-tion of the FAR1/FHY3 Family in Populus trichocarpa Torr. & Gray and Expression Analysis in Light Response. Forests 2021, 12, 1385. https://doi.org/10.3390/f12101385

33. Yuan, N.; Wang, T.; Liu, T.; Yang, Y.; Du, J. Genome-wide analysis of the FAR1/FHY3 gene family in Cot-ton. Cott. Sci. 2018, 14, 1–11.

34. 7. Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE. (2014) Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun. 2014;5:3062. doi: 10.1038/ncomms4062. PubMed PMID: 24430163.

Downloads

Published

2026-01-27

How to Cite

CHARACTERIZATION OF GHFHY3/FAR1 GENE FAMILY MEMBERS IN UPLAND COT-TON (G.HIRSUTUM L.). (2026). Scientific Journal of the Fergana State University, 31(5), 130. https://doi.org/10.56292/SJFSU/vol31_iss5/a130

Most read articles by the same author(s)