logo
O‘zbekcha

IDENTIFICATION OF GHFHY3/FAR1 GENE FAMILY MEMBERS IN GOSSYPIUM SPP. USING COMPARATIVE BIOINFORMATIC ANALYSIS

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss5/a131

Keywords:

G. hirsutum, MULE, SWIF, FAR, domain, protein, FHY3/FAR1, PhyA, gene, genome.

Abstract

The FAR1-RELATED SEQUENCE1 (FAR1) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3) transcription factor family, which originated from transposases, plays a crucial role in light signal transduction and various physiological and developmental processes, including seed germination, photomorphogenesis, flowering, and stress responses. To date, members of this gene family have been bioinformatically and functionally characterized in several vegetable, industrial, and ornamental crops.

In this study, we identified homologs of the FHY3/FAR1 gene family in Gossypium hirsutum using the genome of the Texas Marker-1 (TM1) model variety and compared them with representatives of the FHY3/FAR1 gene family from Arabidopsis thaliana, potato (Solanum tuberosum), poplar (Populus trichocarpa Torr. & Gray), and tea (Camellia sinensis).

Through comparative bioinformatic analyses, a total of 149 FHY3/FAR1 genes were identified in cotton. Among them, 89 homologous genes were confirmed through sequence comparison. Amino acid and coding DNA sequence (CDS) analyses revealed that all identified transcripts possess characteristic domains of the FHY3/FAR1 gene family, including MULE, SWIF, and FAR1/FHY3 DNA-binding domains.

These findings provide a foundation for further studies on the evolution and functional roles of the FHY3/FAR1 gene family in cotton, and contribute to understanding the molecular mechanisms governing cotton growth and development.

Author Biographies

  • Usmanov Dilshod Erkinbayevich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi biologiya fanlari falsafa doktori, PhD

  • Аbdukarimov Sharofiddin Sayfidinovich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Sobirov Botirjon Masharif o‘g‘li, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Azimov Avazxon Abbasovich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi, kichik ilmiy xodim

  • Abdug‘afforov Azamat Tojiboy o‘g‘li, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi, kichik ilmiy xodim

     

  • Juraqulov Durbekjon Saydulla o‘g‘li, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi, stajyor-tadqiqotchi

  • Buriev Zabardast Tojiboevich, O‘zbekiston Respublikasi fanlar akdemiyasi, Genomika va bioinformatika markazi

    O‘zbekiston Respublikasi fanlar akdemiyasi Genomika va bioinformatika markazi, biologiya fanlari doktori

References

1. Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3: 85–93

2. Wang H, Deng XW (2003) Dissecting phytochrome A dependent signaling network in higher plants. Trends Plant Sci 8: 172–178

3. Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP. (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757-68. PubMed PMID: 8364355; PubMed Central PMCID: PMC160314.

4. Deng XW, Quail PH. Signalling in light-controlled development. (1999) Semin Cell Dev Biol. 1999 Apr;10(2):121-9. Review. PubMed PMID: 10441064.

5. Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14: 257–271

6. Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125: 85–88

7. Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE. (2014) Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun. 2014;5:3062. doi: 10.1038/ncomms4062. PubMed PMID: 24430163.

8. Hiltbrunner A. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photore-ceptor[J]. Plant & Cell Physiology, 2006, 47(8): 1023-1034.

9. Hudson M E, Lisch D R, Quail P H. The 3 and 1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway [J]. The Plant Journal, 2003, 34(4): 453-471.

10. Lin R C, Wang H Y. 3/ 1 gene family and distinct roles of its members in light control of development[J]. Plant Physiology, 2004, 136(4): 4010-4022.

11. Lin R C, Teng Y B, Park H J, et al. Discrete and essential roles of the multiple domains of FHY3 in mediat-ing phytochrome A signal transduction [J]. Plant Physiology, 2008,148(2): 981-992.

12. Chen, Q., Song, Y., Liu, K., Su, C., Yu, R., Li, Y., Yang, Y., Zhou, B., Wang, J., & Hu, G. (2023). Genome-Wide Identification and Functional Characterization of FAR1-RELATED SEQUENCE (FRS) Family Members in Potato (Solanum tuberosum). Plants, 12(13), 2575. https://doi.org/10.3390/plants12132575

13. Wang, F.; Wang, X.; Zhang, Y.; Yan, J.; Ahammed, G.J.; Bu, X.; Sun, X.; Liu, Y.; Xu, T.; Qi, H.; et al. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in to-mato. New Phytol. 2022, 233, 2127–2143.

14. Chen, Y.; Deng, J.; Chen, J.; Zeng, T.; Yu, T.; Huang, Q.; Chen, P.; Liu, Q.; Jian, W.; Yang, X. Genome-wide identification and expression analysis of FAR1/FHY3 transcription factor family in tomato. Plant Physiol. J. 2021, 57, 1983–1995.

15. Li, X.; Li, Y.; Qiao, Y.; Lu, S.; Yao, K.; Wang, C.; Liao, W. Genome-Wide Identification and Expression Anal-ysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.). Agronomy 2024, 14, 50. https://doi.org/10.3390/agronomy14010050

16. Zhang, S.; Xu, F.; Zhang, Y.; Lin, J.; Song, C.; Fang, X. Fine mapping and candidate gene analysis of a novel PANICLE AND SPIKELET DEGENERATION gene in rice. Euphytica 2015, 206, 793–803.

17. Kiseleva, A.A.; Potokina, E.K.; Salina, E.A. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC Plant Biol. 2017, 17, 172.

18. Liu, Z.; An, C.; Zhao, Y.; Xiao, Y.; Bao, L.; Gong, C.; Gao, Y. Genome-Wide Identification and Characteriza-tion of the CsFHY3/FAR1 Gene Family and Expression Analysis under Biotic and Abiotic Stresses in Tea Plants (Ca-mellia sinensis). Plants 2021, 10, 570.

19. Dai, J.; Sun, J.; Peng, W.; Liao, W.; Zhou, Y.; Zhou, X.R.; Qin, Y.; Cheng, Y.; Cao, S. FAR1/FHY3 Transcrip-tion Factors Positively Regulate the Salt and Temperature Stress Responses in Eucalyptus grandis. Front. Plant Sci. 2022, 13, 883654.

20. Zeps, M.; Kondratovičs, T.; Grigžde, E.; Jansons, Ā.; Zeltiņš, P.; Samsone, I.; Matisons, R. Plantlet Anatomy of Silver Birch (Betula pendula Roth.) and Hybrid Aspen (Populus tremuloides Michx. × Populus tremula L.) Shows Intraspecific Reactions to Illumination In Vitro. Plants 2022, 11, 1097. https://doi.org/10.3390/plants11081097.

21. Wang, X.; Liu, S.; Zuo, H.; Zheng, W.; Zhang, S.; Huang, Y.; Pingcuo, G.; Ying, H.; Zhao, F.; Li, Y.; et al. Ge-nomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr. Biol. 2021, 31, 3848–3860.e8.

22. Du, J.; Zhang, L.; Ge, X.; Xiang, X.; Cao, D.; Yang, H.; Hu, J. Genome-Wide Identification and Characteriza-tion of the FAR1/FHY3 Family in Populus trichocarpa Torr. & Gray and Expression Analysis in Light Response. Forests 2021, 12, 1385. https://doi.org/10.3390/f12101385

23. Yuan, N.; Wang, T.; Liu, T.; Yang, Y.; Du, J. Genome-wide analysis of the FAR1/FHY3 gene family in Cot-ton. Cott. Sci. 2018, 14, 1–11.

24. Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res 2021, 49, D412–D419.

25. Ma, L.; Li, G. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in Ar-abidopsis growth and development. Front. Plant Sci. 2018, 9, 692.

26. Lin, R.; Wang, H. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 2004, 136, 4010–4022.

Downloads

Published

2026-01-27

How to Cite

IDENTIFICATION OF GHFHY3/FAR1 GENE FAMILY MEMBERS IN GOSSYPIUM SPP. USING COMPARATIVE BIOINFORMATIC ANALYSIS. (2026). Scientific Journal of the Fergana State University, 31(5), 131. https://doi.org/10.56292/SJFSU/vol31_iss5/a131

Most read articles by the same author(s)