Skip to main navigation menu Skip to main content Skip to site footer

Chemistry

No. 2 (2025): FarDU ilmiy xabarlari jurnali (Tabiiy fanlar)

PHOTOCATALYTIC DEGRADATION OF PARACETAMOL IN PHARMACEUTICAL WASTEWATER USING A MAGNETIC POLYMER NANOCOMPOSITE

Submitted
March 25, 2025
Published
2025-04-25

Abstract

This study uses a magnetic polymer nanocomposite to examine the photocatalytic degradation of paracetamol in pharmaceutical wastewater. The transformation of paracetamol into its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI) and subsequent products (e.g., p-benzoquinone and hydroxylated compounds) was found to elevate oxidative stress and bioaccumulation risks in aquatic ecosystems. Under UV irradiation (λ=365 nm), Fe₃O₄/PPE-1 degraded paracetamol with 85±5% efficiency within 160 minutes, retaining 90% activity after 5 cycles due to its magnetic recyclability. The study proposes a new approach to sustainable wastewater treatment and demonstrates the potential of using solar resources in line with Uzbekistan’s “Green Economy” strategy.

References

  1. Samal K, Mahapatra S, Hibzur Ali M. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus. 2022 Jun 16;6:100076.
  2. Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage. 2014 Jan 15;133:378–87.
  3. PF-16-сон 30.01.2025. “O‘zbekiston-2030” strategiyasini “Atrof-muhitni asrash va “yashil iqtisodiyot” yilida amalga oshirishga oid davlat dasturi to‘g‘risida [Internet]. [cited 2025 Mar 18]. Available from: https://lex.uz/uz/docs/-7369703
  4. Eshtursunov D, Inkhonova A, Botirov S, Fayzullayev Y, Bekchanov D, Mukhamediev M. Removal of Rhodamine B from Wastewater by Adsorption using Iron Oxide-Polymer Composite Material. Asian J Chem. 2024;36(1):32–6.
  5. Jiang X, Zhu B, Zhu M. An overview on the recycling of waste poly(vinyl chloride). Green Chem. 2023 Sep 18;25(18):6971–7025.
  6. Gilbert M, Patrick S. Chapter 13 - Poly(Vinyl Chloride). In: Gilbert M, editor. Brydson’s Plastics Materials (Eighth Edition) [Internet]. Butterworth-Heinemann; 2017 [cited 2025 Jan 6]. p. 329–88. Available from: https://www.sciencedirect.com/science/article/pii/B978032335824800013X
  7. Elgharbawy A. Poly Vinyl Chloride Additives and Applications-A Review. J Risk Anal Crisis Response [Internet]. 2022 Sep 30 [cited 2025 Jan 6];12(3). Available from: https://www.jracr.com/index.php/jracr/article/view/335
  8. Lewandowski K, Skórczewska K. A Brief Review of Poly(Vinyl Chloride) (PVC) Recycling. Polymers. 2022 Jan;14(15):3035.
  9. Pielichowski K, Njuguna J, Majka TM. 6 - Thermal degradation of polymers, copolymers, and blends. In: Pielichowski K, Njuguna J, Majka TM, editors. Thermal Degradation of Polymeric Materials (Second Edition) [Internet]. Elsevier; 2023 [cited 2025 Jan 6]. p. 49–147. Available from: https://www.sciencedirect.com/science/article/pii/B9780128230237000162
  10. Yu J, Sun L, Ma C, Qiao Y, Yao H. Thermal degradation of PVC: A review. Waste Manag. 2016 Feb 1;48:300–14.
  11. Lieberzeit P, Bekchanov D, Mukhamediev M. Polyvinyl chloride modifications, properties, and applications: Review. Polym Adv Technol. 2022;33(6):1809–20.
  12. Edo GI, Ndudi W, Ali ABM, Yousif E, Zainulabdeen K, Onyibe PN, et al. Poly(vinyl chloride) (PVC): an updated review of its properties, polymerization, modification, recycling, and applications. J Mater Sci. 2024 Dec 1;59(47):21605–48.
  13. Sarkar S, Guibal E, Quignard F, SenGupta AK. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanoparticle Res. 2012 Jan 25;14(2):715.
  14. Zadehnazari A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. Polym-Plast Technol Mater. 2023 Mar 24;62(5):655–700.
  15. Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules. 2023 Jan;28(7):3086.
  16. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821–71.
  17. Ahire SA, Bachhav AA, Pawar TB, Jagdale BS, Patil AV, Koli PB. The Augmentation of nanotechnology era: A concise review on fundamental concepts of nanotechnology and applications in material science and technology. Results Chem. 2022 Jan 1;4:100633.
  18. Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, et al. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WIREs Nanomedicine Nanobiotechnology. 2024;16(3):e1959.
  19. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water. 2020 Feb;12(2):495.
  20. Epelle EI, Okoye PU, Roddy S, Gunes B, Okolie JA. Advances in the Applications of Nanomaterials for Wastewater Treatment. Environments. 2022 Nov;9(11):141.
  21. Alazaiza MYD, Albahnasawi A, Ali GAM, Bashir MJK, Copty NK, Amr SSA, et al. Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. Water. 2021 Jan;13(16):2186.
  22. Mathur J, Goswami P, Gupta A, Srivastava S, Minkina T, Shan S, et al. Nanomaterials for Water Remediation: An Efficient Strategy for Prevention of Metal(loid) Hazard. Water. 2022 Jan;14(24):3998.
  23. Marchal W, De Sloovere D, Daenen M, Van Bael MK, Hardy A. Precursor Design Strategies for the Low-Temperature Synthesis of Functional Oxides: It’s All in the Chemistry. Chem – Eur J. 2020;26(42):9070–83.
  24. Borjigin T, Schmitt M, Morlet-Savary F, Xiao P, Lalevée J. Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes. Photochem. 2022 Sep;2(3):733–51.
  25. PubChem. Acetaminophen [Internet]. [cited 2025 Mar 18]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1983
  26. Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci. 1984 Mar;81(5):1327–31.
  27. Bedner M, MacCrehan WA. Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ Sci Technol. 2006 Jan 15;40(2):516–22.
  28. Shojaie L, Alavifard H, Dara L. Chapter 5 - Cell death in acetaminophen (APAP) toxicity. In: Rumack BH, Jaeschke H, McGill MR, editors. Acetaminophen Toxicity [Internet]. Academic Press; 2025 [cited 2025 Mar 25]. p. 87–123. Available from: https://www.sciencedirect.com/science/article/pii/B9780443158773000119
  29. Nunes B, Nunes J, Soares AMVM, Figueira E, Freitas R. Toxicological effects of paracetamol on the clam Ruditapes philippinarum: exposure vs recovery. Aquat Toxicol. 2017 Nov 1;192:198–206.
  30. Okeke ES, Ezeorba TPC, Okoye CO, Chen Y, Mao G, Feng W, et al. Environmental and health impact of unrecovered API from pharmaceutical manufacturing wastes: A review of contemporary treatment, recycling and management strategies. Sustain Chem Pharm. 2022 Dec 1;30:100865.
  31. Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere. 2024 Sep 1;364:143055.
  32. Lu Q, Choi K, Nam JD, Choi HJ. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers. 2021 Jan;13(4):512.
  33. Mukhamediev MG, Bekchanov DZh. New Anion Exchanger Based on Polyvinyl Chloride and Its Application in Industrial Water Treatment. Russ J Appl Chem. 2019 Nov 1;92(11):1499–505.
  34. Bekchanov D, Mukhamediev M, Inkhonova A, Eshtursunov D, Babojonova G, Rajabov O, et al. Magnetic and reusable Fe3O4/PPE-2 functional material for efficient photodegradation of organic dye. Environ Res. 2025 Mar 15;269:120911.

Most read articles by the same author(s)