TUPROQLARNING SHOʻRLANISHINI BAHOLASH USULLARINI ANIQLASH: TUSHUNCHALAR, INNOVATSIYALAR, VA BARQAROR QISHLOQ XOʻJALIGI VA ATROF-MUHITNI MUHOFAZA QILISH UCHUN MASOFADAN TURIB ZONDLASH
##plugins.themes.bootstrap3.article.main##
Annotatsiya
Tuproqning sho‘rlanishini baholash qishloq xo‘jaligi barqarorligini ta'minlash va atrof-muhitni samarali boshqarish uchun juda muhimdir. Ushbu maqolada biz tuproq sho‘rlanishini baholashning turli usullarini, shu jumladan dalada sharoitiga asoslangan texnikalarni, laboratoriya tahlil usullarini va masofadan zondlash texnologiyalarini, ularning kuchli tomonlari, cheklovchi omillarini va oqibatlarini hisobga olgan holda baholaymiz. Ushbu usullar orasida masofaviy zondlash iqtisodiy samaradorligi, keng koʻlamliligi va kelajakdagi rivojlanishlar uchun salohiyati tufayli istiqbolli yondashuv sifatida namoyon bo‘ladi. Tuproqlarning shoʻrlanishini aniqlashda masofadan zondlash texnologiyalari, masalan, sun'iy yo‘ldosh tasvirlari va havodan o‘rganishlar alohida afzalliklarni taqdim etadi, bu katta geografik hududlarni monitoring qilish vositalarini ta'minlaydi va tuproq sho‘rlanish holatlarini o‘z vaqtida aniqlash va xaritalash imkonini beradi. Bundan tashqari, masofadan zondlash multispektral va giperspektral ma'lumotlarni birlashtirishga imkon beradi, bu esa baholash natijalarining aniqliligini oshiradi. Masofaviy zondlash ma'lumotlarining mavjudligi va aqlli algoritmlarning rivojlanishi uning turli xil ekologik holatlarda qo‘llanilishiga yordam beradi. Ushbu taqriz tuproq sho‘rlanishini baholashning muhimligini ta'kidlaydi va tuproq sho‘rlanishining qishloq xo‘jaligi mahsuldorligiga va atrof-muhit barqarorligiga salbiy ta'sirini kamaytirish uchun dalillarga asoslangan boshqaruv strategiyalari haqida ma’lumot berish uchun masofadan zondlash texnologiyalarining imkoniyatlari alohida urgʻu berib ta’kidlanadi.
##plugins.themes.bootstrap3.article.details##
Tsya robota litsenzuetsya vydpovídno do Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 xalqaro litsenziyasi.
Foydalaniladigan adabiyotlar
Abuelgasim, A., & Ammad, R. (2019). Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sensing Applications: Society and Environment, 13(December 2018), 415–425. https://doi.org/10.1016/j.rsase.2018.12.010
Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., Schillaci, C., Ali, N., & Al-Doss, A. (2021). Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. In Agronomy (Vol. 11, Issue 11). MDPI. https://doi.org/10.3390/agronomy11112299
Asfaw, E., Suryabhagavan, K. V., & Argaw, M. (2018). Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(3), 250–258. https://doi.org/10.1016/j.jssas.2016.05.003
Aziz, S. A., Zelenáková, M., Mésároš, P., Purcz, P., & Abd-Elhamid, H. (2019). Assessing the Potential Impacts of the Grand Ethiopian Renaissance Dam on Water Resources and Soil Salinity in the Nile Delta, Egypt. Sustainability (Switzerland), 11(24). https://doi.org/10.3390/su11247050
Barker, R. E. (1964). Suggested units for conductivity. Nature, 203(4943), 513–513.
Clarke, D., Lázár, A. N., Saleh, A. F. M., & Jahiruddin, M. (2018). Prospects for agriculture under climate change and soil salinisation. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis (pp. 447–467). Springer International Publishing. https://doi.org/10.1007/978-3-319-71093-8_24
Delavar, M. A., Naderi, A., Ghorbani, Y., Mehrpouyan, A., & Bakhshi, A. (2020). Soil salinity mapping by remote sensing south of Urmia Lake, Iran. Geoderma Regional, 22, e00317. https://doi.org/10.1016/j.geodrs.2020.e00317
FAO. (2021a). Standard operating procedure for saturated soil paste extract.
FAO. (2021b). Standard operating procedure for soil electrical conductivity, soil/water, 1:5. http://www.wipo.int/amc/en/mediation/rules
Gamalero, E., Bona, E., Todeschini, V., & Lingua, G. (2020). Saline and arid soils: Impact on bacteria, plants, and their interaction. In Biology (Vol. 9, Issue 6, pp. 1–27). MDPI AG. https://doi.org/10.3390/biology9060116
Günal, E., Wang, X., Kılıc, O. M., Budak, M., Al Obaid, S., Ansari, M. J., & Brestic, M. (2021). Potential of Landsat 8 OLI for mapping and monitoring of soil salinity in an arid region: A case study in Dushak, Turkmenistan. PLoS ONE, 16(11 November). https://doi.org/10.1371/journal.pone.0259695
Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. In Frontiers in Plant Science (Vol. 7, Issue NOVEMBER2016). Frontiers Research Foundation. https://doi.org/10.3389/fpls.2016.01787
Hardie, M., & Doyle, R. (2012). Measuring soil salinity. Methods in Molecular Biology, 913, 415–425. https://doi.org/10.1007/978-1-61779-986-0_28
Hassan, R., Ahmed, Z., Islam, Md. T., Alam, R., & Xie, Z. (2021). Soil Salinity Detection Using Salinity Indices from Landsat 8 Satellite Image at Rampal, Bangladesh. Remote Sensing in Earth Systems Sciences, 4(1–2), 1–12. https://doi.org/10.1007/s41976-020-00041-y
Hassani, A., Azapagic, A., & Shokri, N. (n.d.). Predicting long-term dynamics of soil salinity and sodicity on a global scale. https://doi.org/10.1073/pnas.2013771117/-/DCSupplemental
He, Y., Zhang, Z., Xiang, R., Ding, B., Du, R., Yin, H., Chen, Y., & Ba, Y. (2023). Monitoring salinity in bare soil based on Sentinel-1/2 image fusion and machine learning. Infrared Physics & Technology, 131, 104656. https://doi.org/10.1016/j.infrared.2023.104656
He Yanbo. (2012). A review on electrical conductivity (EC) as a soil salinity indicator. Journal of Soil Science and Plant Nutrition, 12(2), 279–291.
Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., Rengasamy, P., Ben-Gal, A., Assouline, S., Javaux, M., Minhas, P. S., Raats, P. A. C., Skaggs, T. H., Wang, G., De Jong van Lier, Q., Jiao, H., Lavado, R. S., Lazarovitch, N., Li, B., & Taleisnik, E. (2021). Critical knowledge gaps and research priorities in global soil salinity. In Advances in Agronomy (Vol. 169, pp. 1–191). Academic Press Inc. https://doi.org/10.1016/bs.agron.2021.03.001
Intergovernmental Technical Panel on Soils. (2015). Intergovernmental Technical Panel on Soils. Status of the world’s soil resources: Main report. Food and Agriculture Organization of the United Nations.
Kargas, G., Chatzigiakoumis, I., Kollias, A., Spiliotis, D., Massas, I., & Kerkides, P. (2018). Soil salinity assessment using saturated paste and mass soil:water 1:1 and 1:5 ratios extracts. Water (Switzerland), 10(11). https://doi.org/10.3390/w10111589
Kholdorov, S., Gopakumar, L., Jabbarov, Z., Yamaguchi, T., Yamashita, M., Samatov, N., & Katsura, K. (2023). Analysis of irrigated salt-affected soils in the Central Fergana Valley, Uzbekistan, using Landsat 8 and Sentinel-2satellite images, laboratory studies, and spectral index-based approaches [Unpublished manuscript]. Eurasian Soil Science, 56(8). http://orcid.org/0000-0001-9394-215X
Kholdorov, Sh., Gopakumar, L., Katsura, K., Jabbarov, Z., Jobborov, O., Shamsiddinov, T., & Khakimov, A. (2022). Soil salinity assessment research using remote sensing techniques: a special focus on recent research. IOP Conference Series: Earth and Environmental Science, 1068(1). https://doi.org/10.1088/1755-1315/1068/1/012037
Kilic, O. M., Budak, M., Gunal, E., Acir, N., Halbac-Cotoara-Zamfir, R., Alfarraj, S., & Ansari, M. J. (2022). Soil salinity assessment of a natural pasture using remote sensing techniques in central Anatolia, Turkey. PLoS ONE, 17(4 April). https://doi.org/10.1371/journal.pone.0266915
Liu, J., Zhang, L., Dong, T., Wang, J., Fan, Y., Wu, H., Geng, Q., Yang, Q., & Zhang, Z. (2021). The applicability of remote sensing models of soil salinization based on feature space. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413711
Lutz, W., Goujon, A., Stonawski, M., & Stilianakis, N. (n.d.). Demographic and human capital scenarios for the 21st century 2018 assessment for 201 countries.
Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. In Horticulturae (Vol. 3, Issue 2). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/horticulturae3020030
Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. In Complex and Intelligent Systems (Vol. 7, Issue 6, pp. 2797–2818). Springer International Publishing. https://doi.org/10.1007/s40747-021-00457-z
Meena, R. P., Karnam, V., Tripathi, S. C., Jha, A., Sharma, R. K., & Singh, G. P. (2019). Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources. Agricultural Water Management, 214, 38–46. https://doi.org/10.1016/j.agwat.2019.01.001
N. Thaker, P., Brahmbhatt, N., & Shah, K. (2021). A REVIEW: IMPACT OF SOIL SALINITY ON ECOLOGICAL, AGRICULTURAL AND SOCIO-ECONOMIC CONCERNS. International Journal of Advanced Research, 9(07), 979–986. https://doi.org/10.21474/IJAR01/13200
Oldeman, R. A. A., Hakkeling, R. T., & Sombroek, W. G. (1991). World map of the potential natural vegetation. International Institute for Applied Systems Analysis.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282–295. https://doi.org/10.1111/1477-8947.12054
Singh, A. (2022). Soil salinity: A global threat to sustainable development. In Soil Use and Management (Vol. 38, Issue 1, pp. 39–67). John Wiley and Sons Inc. https://doi.org/10.1111/sum.12772
Stavi, I., Thevs, N., & Priori, S. (2021). Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. In Frontiers in Environmental Science (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fenvs.2021.712831
Zhu, Z., Wulder, M. A., Roy, D. P., Woodcock, C. E., Hansen, M. C., Radeloff, V. C., Healey, S. P., Schaaf, C., Hostert, P., Strobl, P., Pekel, J. F., Lymburner, L., Pahlevan, N., & Scambos, T. A. (2019). Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 224, 382–385. https://doi.org/10.1016/j.rse.2019.02.016