AN-31 ANIONITIGA BIXRAMAT IONLARINING SORBSIYASINI ERITMA pH MUHITIGA BOGʻLIQLIGINI TADQIQ QILISH

##plugins.themes.bootstrap3.article.main##

Botirov Sunnatjon Xudoyberdi o’g’li
Eshtursunov Davron Abdisamatovich
Inxonova Arofat
Bekchanov Davronbek Jumazarovich
Muxamediyev Muxtarjan Ganievich

Annotatsiya

Ma`lumki ion almashinuvchi qatronlarga turli xil ionlarni sorbsiyasini o‘rganishda eritma pH muhiti sorbsiya sig‘imiga o‘z ta’sirini ko’rsatmay qolmaydi. Shu sababdan ushbu maqolada sanoat miqyosida ishlatiladigan AN-31 anionitiga bixromat ionlari sorbsiyasiga eritma pH muhitining bog‘liqligi oʻrganilgan. Tadqiqot natijalari shuni ko‘rsatadiki, bixramat ionlarining eritma pH muhiti kislotali bo‘lganda sanoat miqyosida ishlatiladigan AN -31 anioniga sorbsiyasi yuqori bo‘lishligi aniqlandi.

##plugins.themes.bootstrap3.article.details##

Bo‘lim
Kimyo
Mualliflar biografiyasi

Botirov Sunnatjon Xudoyberdi o’g’li, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi tayanch doktoranti,

Eshtursunov Davron Abdisamatovich, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi tayanch doktoranti,

Inxonova Arofat, “Alfraganus university” nodavlat oliy ta`lim tashkiloti

“Alfraganus university” nodavlat oliy ta`lim tashkiloti, Farmatsevtika va kimyo kafedrasi, PhD ,

Bekchanov Davronbek Jumazarovich, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi k.f.d., prof.

Muxamediyev Muxtarjan Ganievich, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi k.f.d., prof.

Foydalaniladigan adabiyotlar

Cipullo S, Snapir B, Tardif S, Campo P, Prpich G, Coulon F. Insights into mixed contaminants interactions and its implication for heavy metals and metalloids mobility, bioavailability and risk assessment. Sci Total Environ. 2018;645:662-73.

Kibuye FA, Gall HE, Veith TL, Elkin KR, Elliott HA, Harper JP, et al. Influence of hydrologic and anthropogenic drivers on emerging organic contaminants in drinking water source in the Susquehanna River Basin. Chemosphere. 2020;245:125583.

Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF. Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere. 2019;232:96-112.

Izbicki, J.A., Bullen, T.D., Martin, P., Schroth, B., 2012. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Appl. Geochem. 27 (4), 841–853.

Kaprara, E., Kazakis, N., Simeonidis, K., Coles, S., Zouboulis, A.I., Samaras, P., Mitrakas, M., 2015. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. J. Hazard Mater. 281 (3), 2–11.

Margiotta, S., Mongelli, G., Summa, V., Paternoster, M., Fiore, S., 2012. Trace element distribution and Cr(VI) speciation in Ca-HCO3, and Mg-HCO3, spring waters from the northern sector of the Pollino massif, southern Italy. J. Geochem. Explor. 115 (8), 1–12.

Villalobos-Aragon, ´ A., Ellis, A.S., Armienta, M.A., Morton-Bermea, O., Johnson, T.M., 2012. Geochemistry and Cr stable isotopes of Cr-contaminated groundwater in Leon ´ valley, Guanajuato, M´exico. Appl. Geochem. 27 (9), 1783–1794.

Kotas, J. and Stasicka, Z. (2000) Chromium Occurrence in the Environment and Methods of Its Speciation.// Environmental Pollution, 107, 263-283. https://doi.org/10.1016/S0269-7491(99)00168-2.

OSHA (2006) Fact sheet health efects of hexavalent chromium hexavalent.// OSHA, Washington, DC

Mohan, D., CU Pittman Jr. and J. Hazard. For the treatment of trivalent and hexavalent chromium from water activated carbons and cheap adsorbents.// Dangerous materials journal B137: 762-811, 2006.

Banerjee M, Bar N, Basu RK, Das SK. Comparative study of adsorptive removal of Cr (VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ Sci Pollut Res. 2017;24(11):10604–20. https://doi.org/10.1007/s11356-017-8582-8.

Bahador F, Foroutan R, Esmaeili H, Ramavandi B. Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohydr Polym. 2021 Jan;251:117085. https://doi.org/10.1016/j.carbpol.2020.117085.

Foroutan R, Peighambardoust SJ, Mohammadi R, Omidvar M, Sorial GA, Ramavandi B. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. Int J Biol Macromol. 2020 May;151:355–65. https://doi.org/10.1016/j.ijbiomac.2020.02.202.

Abshirini Y, Foroutan R, Esmaeili H. Cr(VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina–Christi leaf. Materials Research Express. 2019;6:(4).

Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, et al. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr (VI) from contaminated water: a batch and column scale study. Environ Pollut. 2020;261:114231. https://doi.org/10.1016/j.envpol.2020.114231.

Peng H, Guo J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ Chem Lett. 2020:1–14.

Ushbu muallif(lar)ning maqolalari, eng ko‘p o‘qilgan