STUDY OF THE DEPENDENCE OF SORPTION OF BICHROMATE IONS BY AN-31 ANION EXIT ON THE PH OF THE MEDIUM SOLUTION

Main Article Content

Sunnatjon Botirov
Davron Eshtursunov
Arofat Inxonova
Davronbek Bekchanov
Muxtarjan Muxamediyev

Abstract

It is known that when studying the sorption of various ions on ion exchange resins, the pH of the solution has an effect on the sorption capacity. For this reason, this article studies the dependence of solution pH on the sorption of bichromate ions to AN-31 anionite, which is used on an industrial scale. The research results show that the sorption of bichromate ions to AN-31 anion, which is used on an industrial scale, is high when the pH of the solution is acidic.

Article Details

How to Cite
Botirov, S., Eshtursunov, D., Inxonova, A., Bekchanov, D., & Muxamediyev, M. (2024). STUDY OF THE DEPENDENCE OF SORPTION OF BICHROMATE IONS BY AN-31 ANION EXIT ON THE PH OF THE MEDIUM SOLUTION. Scientific Journal of the Fergana State University, 30(5), 63. Retrieved from https://journal.fdu.uz/index.php/sjfsu/article/view/5279
Section
Chemistry
Author Biographies

Sunnatjon Botirov, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi tayanch doktoranti,

Davron Eshtursunov, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi tayanch doktoranti,

Arofat Inxonova, “Alfraganus university” nodavlat oliy ta`lim tashkiloti

“Alfraganus university” nodavlat oliy ta`lim tashkiloti, Farmatsevtika va kimyo kafedrasi, PhD ,

Davronbek Bekchanov, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi k.f.d., prof.

Muxtarjan Muxamediyev, Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti

Mirzo Ulugʻbek nomidagi Oʻzbekiston milliy unversiteti, Kimyo fakulteti polimerlar kimyosi kafedrasi k.f.d., prof.

References

Cipullo S, Snapir B, Tardif S, Campo P, Prpich G, Coulon F. Insights into mixed contaminants interactions and its implication for heavy metals and metalloids mobility, bioavailability and risk assessment. Sci Total Environ. 2018;645:662-73.

Kibuye FA, Gall HE, Veith TL, Elkin KR, Elliott HA, Harper JP, et al. Influence of hydrologic and anthropogenic drivers on emerging organic contaminants in drinking water source in the Susquehanna River Basin. Chemosphere. 2020;245:125583.

Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF. Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere. 2019;232:96-112.

Izbicki, J.A., Bullen, T.D., Martin, P., Schroth, B., 2012. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Appl. Geochem. 27 (4), 841–853.

Kaprara, E., Kazakis, N., Simeonidis, K., Coles, S., Zouboulis, A.I., Samaras, P., Mitrakas, M., 2015. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. J. Hazard Mater. 281 (3), 2–11.

Margiotta, S., Mongelli, G., Summa, V., Paternoster, M., Fiore, S., 2012. Trace element distribution and Cr(VI) speciation in Ca-HCO3, and Mg-HCO3, spring waters from the northern sector of the Pollino massif, southern Italy. J. Geochem. Explor. 115 (8), 1–12.

Villalobos-Aragon, ´ A., Ellis, A.S., Armienta, M.A., Morton-Bermea, O., Johnson, T.M., 2012. Geochemistry and Cr stable isotopes of Cr-contaminated groundwater in Leon ´ valley, Guanajuato, M´exico. Appl. Geochem. 27 (9), 1783–1794.

Kotas, J. and Stasicka, Z. (2000) Chromium Occurrence in the Environment and Methods of Its Speciation.// Environmental Pollution, 107, 263-283. https://doi.org/10.1016/S0269-7491(99)00168-2.

OSHA (2006) Fact sheet health efects of hexavalent chromium hexavalent.// OSHA, Washington, DC

Mohan, D., CU Pittman Jr. and J. Hazard. For the treatment of trivalent and hexavalent chromium from water activated carbons and cheap adsorbents.// Dangerous materials journal B137: 762-811, 2006.

Banerjee M, Bar N, Basu RK, Das SK. Comparative study of adsorptive removal of Cr (VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ Sci Pollut Res. 2017;24(11):10604–20. https://doi.org/10.1007/s11356-017-8582-8.

Bahador F, Foroutan R, Esmaeili H, Ramavandi B. Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohydr Polym. 2021 Jan;251:117085. https://doi.org/10.1016/j.carbpol.2020.117085.

Foroutan R, Peighambardoust SJ, Mohammadi R, Omidvar M, Sorial GA, Ramavandi B. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. Int J Biol Macromol. 2020 May;151:355–65. https://doi.org/10.1016/j.ijbiomac.2020.02.202.

Abshirini Y, Foroutan R, Esmaeili H. Cr(VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina–Christi leaf. Materials Research Express. 2019;6:(4).

Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, et al. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr (VI) from contaminated water: a batch and column scale study. Environ Pollut. 2020;261:114231. https://doi.org/10.1016/j.envpol.2020.114231.

Peng H, Guo J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ Chem Lett. 2020:1–14.