logo
O‘zbekcha

SODIUM–SULFUR AND SODIUM–SELENIUM BATTERIES OPERATING AT ROOM TEMPERATURE

Mualliflar

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss3/a%25p

Kalit so‘zlar:

natriy–oltingugurt batareyasi, natriy–selen batareyasi, karbonat asosidagi elektrolit, efir asosidagi elektrolit, elektrolit modifikatsiyasi, energiya saqlash

Annotatsiya

Sodium-based secondary batteries, especially sodium–sulfur (Na–S) and sodium–selenium (Na–Se) systems, are attracting attention as future energy storage technologies due to their low cost and stability. This article reviews recent literature results on the chemical composition of carbonate and ether-based electrolytes for Na–S and Na–Se batteries, their modification strategies, and electrochemical performance. Approaches to electrolyte additives, ionic transport mechanisms, and electrode–electrolyte interphase stability are compared, and promising electrolyte design directions for these systems are discussed.

Mualliflar haqida

  • , Farg‘ona davlat texnika universiteti

    Farg‘ona davlat texnika universiteti doktoranti (DSc)

  • , Farg‘ona davlat texnika universiteti

    Farg‘ona davlat texnika universiteti, kimyo fanlari falsafa doktori, assistent

Adabiyotlar

Goikolea, E., Palomares, V., Wang, S.J., et al.: Na-ion batteries: approaching old and new challenges. Adv. Energy Mater. 10, 2002055 (2020). https://doi.org/10.1002/aenm.202002055

Wang, Y.Z., Zhou, D., Palomares, V., et al.: Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13, 3848–3879 (2020). https://doi. org/10.1039/d0ee02203a

Rai, A., Esplin, R., Nunn, O., et al.: The times they are a changin’: current and future trends in electricity demand and supply. Electr. J. 32, 24–32 (2019). https://doi.org/10.1016/j.tej. 2019.05.017

Lachuriya, A., Kulkarni, R.: Stationary electrical energy storage technology for global energy sustainability: a review. In: 2017 international conference on nascent technologies in engineering (ICNTE), Vashi, India (2017)

Papaefthymiou, G., Dragoon, K.: Towards 100% renewable energy systems: uncapping power system flexibility. Energy Policy 92, 69–82 (2016). https://doi.org/10.1016/j.enpol.2016. 01.025

Hameer, S., van Niekerk, J.L.: A review of large-scale electrical energy storage. Int. J. Energy Res. 39, 1179–1195 (2015). https:// doi.org/10.1002/er.3294

Kousksou, T., Bruel, P., Jamil, A., et al.: Energy storage: applications and challenges. Sol. Energy Mater. Sol. Cells 120, 59–80 (2014). https://doi.org/10.1016/j.solmat.2013.08.015

Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochem. Energy Rev. 5, 112–144 (2022). https://doi.org/10.1007/s41918-021-00110-w

Wang, H., Matios, E., Luo, J.M., et al.: Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem. Soc. Rev. 49, 3783–3805 (2020). https://doi.org/10.1039/d0cs00033g

Wang, Y.X., Zhang, B.W., Lai, W.H., et al.: Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829

Jaumaux, P., Wu, J.R., Shanmukaraj, D., et al.: Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644 (2021). https://doi.org/10.1002/adfm.202008644

Liang, Y.L., Dong, H., Aurbach, D., et al.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0

Sun, B., Xiong, P., Maitra, U., et al.: Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 32, 1903891 (2020). https://doi.org/10.1002/adma. 201903891

Perveen, T., Siddiq, M., Shahzad, N., et al.: Prospects in anode materials for sodium ion batteries: a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser. 2019.109549

Kumar, D., Kuhar, S.B., Kanchan, D.K.: Room temperature sodium–sulfur batteries as emerging energy source. J. Energy Storage 18, 133–148 (2018). https://doi.org/10.1016/j.est.2018. 04.021

Hueso, K.B., Armand, M., Rojo, T.: High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734 (2013). https://doi.org/10.1039/c3ee24086j

Duan, J., Tang, X., Dai, H.F., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4

US Geological Survey. Mineral Commodity Summaries 2022. Reston, VA (2022). https://doi.org/10.3133/mineral2022

Hans Wedepohl, K.: The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995). https://doi. org/10.1016/0016-7037(95)00038-2

Haynes, W.M., Lide, D.R., Bruno, T.J.: CRC handbook of chemistry and physics. CRC Press, Boca Raton (2016). https://doi.org/ 10.1201/9781315380476

Ma, D.T., Li, Y.L., Yang, J.B., et al.: New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferro-electric-encapsulated cathode: toward ultrastable free-standing room temperature sodium–sulfur batteries. Adv. Funct. Mater. 28, 1705537 (2018). https://doi.org/10.1002/adfm.201705537

Shiraz, M.H.A., Zhao, P., Liu, J.: High-performance sodium–selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. J. Power Sources 453, 227855 (2020). https://doi.org/10.1016/j. jpowsour.2020.227855

Wang, Y.X., Wang, Y.X., Wang, Y.X., et al.: Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 5, 2547–2570 (2019). https://doi.org/10.1016/j. chempr.2019.05.026

Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https:// doi.org/10.1039/c6cs00776g

Kumar, D., Rajouria, S.K., Kuhar, S.B., et al.: Progress and prospects of sodium–sulfur batteries: a review. Solid State Ion. 312, 8–16 (2017). https://doi.org/10.1016/j.ssi.2017.10.004

Manthiram, A., Yu, X.W.: Ambient temperature sodium–sulfur batteries. Small 11, 2108–2114 (2015). https://doi.org/10.1002/ smll.201403257

Wen, Z.Y., Hu, Y.Y., Wu, X.W., et al.: Main challenges for high performance NAS battery: materials and interfaces. Adv. Funct. Mater. 23, 1005–1018 (2013). https://doi.org/10.1002/adfm. 201200473

Zhang, F., Xiong, P., Guo, X., et al.: A nitrogen, sulphur dualdoped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium–selenium batteries. Energy Storage Mater. 19, 251–260 (2019). https://doi. org/10.1016/j.ensm.2019.03.019

Li, Q.Q., Liu, H.G., Yao, Z.P., et al.: Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10, 8788–8795 (2016). https://doi.org/10.1021/acsna no.6b04519

Huang, X.L., Zhou, C.F., He, W.D., et al.: An emerging energy storage system: advanced Na–Se batteries. ACS Nano 15, 5876– 5903 (2021). https://doi.org/10.1021/acsnano.0c10078

Parant, J.P., Olazcuaga, R., Devalette, M., et al.: Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J. Solid State Chem. 3, 1–11 (1971). https://doi.org/10.1016/0022-4596(71) 90001-6

Nagelberg, A.S., Worrell, W.L.: A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 29, 345–354 (1979). https://doi.org/10.1016/0022-4596(79)90191-9

Braconnier, J.J., Delmas, C., Fouassier, C., et al.: Comporte- ment electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980). https://doi.org/10.1016/0025-5408(80) 90199-3

Yoshino, A.: The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012). https://doi.org/10.1002/anie. 201105006

Zubi, G., Dufo-López, R., Carvalho, M., et al.: The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser. 2018.03.002

Yang, C.P., Xin, S., Yin, Y.X., et al.: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem. Int. Ed. 52, 8363–8367 (2013). https://doi.org/10.1002/ anie.201303147

Kummer, J. T., Neill, W.: Google Patents (1968)

Xin, S., Yin, Y.X., Guo, Y.G., et al.: A high-energy room-temperature sodium–sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126

NGK Insulators (2021) About NGK history. https://www.ngk- insulators.com/en/info/history/. Accessed 23 Feb 2023

NGK Insulators (2009) The vendors’ perspective on barriers & issues encountered in U.S. deployment. https://efiling.energy.ca. gov/GetDocument.aspx?tn=50786&DocumentContentId=9147. Accessed 23 Feb 2023

Abraham, K., Rauh, R., Brummer, S.: A low temperature Na–S battery incorporating a soluble S cathode. Electrochim. Acta 23, 501–507 (1978). https://doi.org/10.1016/0013-4686(78)85027-0

Sciamanna, S.F., Lynn, S.: Sulfur solubility in pure and mixed organic solvents. Ind. Eng. Chem. Res. 27, 485–491 (1988). https://doi.org/10.1021/ie00075a019

Lu, X.C., Kirby, B.W., Xu, W., et al.: Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299–306 (2013). https://doi.org/10.1039/c2ee23606k

Xu, X.F., Zhou, D., Qin, X.Y., et al.: A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10. 1038/s41467-018-06443-3

Yang, C.P., Yin, Y.X., Guo, Y.G.: Elemental selenium for electro-chemical energy storage. J. Phys. Chem. Lett. 6, 256–266 (2015). https://doi.org/10.1021/jz502405h

Ding, J., Zhou, H., Zhang, H.L., et al.: Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ. Sci. 10, 153–165 (2017). https://doi.org/10.1039/c6ee02274j

Chawla, N., Safa, M.E.: Sodium batteries: a review on sodium– sulfur and sodium–air batteries. Electronics 8, 1201 (2019). https://doi.org/10.3390/electronics8101201

Wang, N.N., Wang, Y.X., Bai, Z.C., et al.: High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 13, 562–570 (2020). https://doi.org/10.1039/c9ee03251g

Lee, B., Paek, E., Mitlin, D., et al.: Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642

Wang, C.L., Wang, H., Hu, X.F., et al.: Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium–sulfur batteries. Adv. Energy Mater. 9, 1803251 (2019). https://doi.org/10.1002/aenm.201803251

Ponrouch, A., Monti, D., Boschin, A., et al.: Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015). https://doi.org/10.1039/c4ta04428b

Cresce, A.V., Russell, S.M., Borodin, O., et al.: Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19, 574–586 (2017). https://doi.org/10.1039/ c6cp07215a

Abraham, K.M.: How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5, 3544–3547 (2020). https://doi.org/10.1021/acsenergylett.0c02181

Eshetu, G.G., Elia, G.A., Armand, M., et al.: Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv. Energy Mater. 10, 2000093 (2020). https://doi.org/10.1002/aenm.202000093

Ponrouch, A., Marchante, E., Courty, M., et al.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572 (2012). https://doi.org/10.1039/c2ee22258b

Zhao, X.M., Yan, Y.W., Ren, X.X., et al.: Trimethyl phosphate for nonflammable carbonate-based electrolytes for safer room-temperature sodium–sulfur batteries. ChemElectroChem 6, 1229–1234 (2019). https://doi.org/10.1002/celc.201801833

Wu, J.X., Liu, J.P., Lu, Z.H., et al.: Non-flammable electrolyte for dendrite-free sodium–sulfur battery. Energy Storage Mater. 23, 8–16 (2019). https://doi.org/10.1016/j.ensm.2019.05.045

di Lecce, D., Minnetti, L., Polidoro, D., et al.: Triglyme-based electrolyte for sodium-ion and sodium–sulfur batteries. Ionics 25, 3129–3141 (2019). https://doi.org/10.1007/s11581-019-02878-w

Eng, A.Y.S., Kumar, V., Zhang, Y.W., et al.: Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv. Energy Mater. 11, 2003493 (2021). https://doi.org/ 10.1002/aenm.202003493

Zhang, J., Wang, D.W., Lv, W., et al.: Ethers illume sodiumbased battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8, 1801361 (2018). https://doi.org/10.1002/ aenm.201801361

Li, P.R., Ma, L., Wu, T.P., et al.: Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li–S and Na–S batteries. Adv. Energy Mater. 8, 1800624 (2018). https://doi.org/10.1002/aenm.201800624

Zhang, H., Diemant, T., Qin, B.S., et al.: Solvent-dictated sodium sulfur redox reactions: investigation of carbonate and ether elec-trolytes. Energies 13, 836 (2020). https://doi.org/10.3390/en130 40836

Ryu, H., Kim, T., Kim, K., et al.: Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J. Power Sources 196, 5186–5190 (2011). https://doi.org/10.1016/j.jpowsour.2011.01. 109

Liu, H.W., Lai, W.H., Yang, Q.R., et al.: Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries. Nano Micro Lett. 13, 1–14 (2021). https://doi. org/10.1007/s40820-021-00648-w

Kohl, M., Borrmann, F., Althues, H., et al.: Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium–sulfur full cell batteries. Adv. Energy Mater. 6, 1502185 (2016). https://doi.org/10.1002/aenm.201502185

Lin, Z., Liu, Z.C., Fu, W.J., et al.: Phosphorous pentasulfide as a novel additive for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 23, 1064–1069 (2013). https://doi.org/10. 1002/adfm.201200696

Yu, X.W., Manthiram, A.: Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118, 22952–22959 (2014). https://doi.org/10.1021/ jp507655u

Zhou, D., Tang, X., Guo, X., et al.: Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59, 16725–16734 (2020). https://doi.org/10.1002/anie.20200 7008

Medenbach, L., Hartmann, P., Janek, J., et al.: A sodium polysulfide battery with liquid/solid electrolyte: improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol. 8, 1901200 (2020). https://doi. org/10.1002/ente.201901200

Yu, X.W., Manthiram, A.: Ambient-temperature sodium–sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5, 1500350 (2015). https://doi.org/10.1002/aenm.20150 0350

Kumar, A., Ghosh, A., Roy, A., et al.: High-energy density room temperature sodium–sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays. Energy Storage Mater. 20, 196– 202 (2019). https://doi.org/10.1016/j.ensm.2018.11.031

Kumar, A., Ghosh, A., Forsyth, M., et al.: Free-radical catalysis and enhancement of the redox kinetics for room-temperature sodium–sulfur batteries. ACS Energy Lett. 5, 2112–2121 (2020). https://doi.org/10.1021/acsenergylett.0c00913

Reddy, B., Premasudha, M., Oh, K.M., et al.: Hydrothermal synthesis of MoS2/rGO composite as sulfur hosts for room temperature sodium–sulfur batteries and its electrochemical properties. J. Energy Storage 39, 102660 (2021). https://doi. org/10.1016/j.est.2021.102660

Basile, A., Hilder, M., Makhlooghiazad, F., et al.: Sodium energy storage: ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies (adv. energy mater. 17/2018). Adv. Energy Mater. 8, 1870078 (2018). https://doi.org/10.1002/ aenm.201870078

Stettner, T., Balducci, A.: Protic ionic liquids in energy storage devices: past, present and future perspective. Energy Storage Mater. 40, 402–414 (2021). https://doi.org/10.1016/j.ensm.2021. 04.036

Yang, Q.W., Zhang, Z.Q., Sun, X.G., et al.: Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47, 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h

Nozawa, R., Harimoto, R., Tsuchiya, M., et al.: Sodium-sulfur batteries with room-temperature ionic liquid electrolytes. Elec- trochem Soc Meeting Abstr 222. 2, 22 (2012)

Wei, S.Y., Xu, S.M., Agrawral, A., et al.: A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016). https://doi.org/10.1038/ncomms11722

Wang, D., Hwang, J., Chen, C.Y., et al.: A β-alumina/inor- ganic ionic liquid dual electrolyte for intermediate-temperature sodium–sulfur batteries. Adv. Funct. Mater. 31, 2105524 (2021). https://doi.org/10.1002/adfm.202105524

Ruiz-Martínez, D., Gómez, R.: The liquid ammoniate of sodium iodide as an alternative electrolyte for sodium ion batteries: the case of titanium dioxide nanotube electrodes. Energy Storage Mater. 22, 424–432 (2019). https://doi.org/10.1016/j.ensm.2019. 07.036

Ruiz-Martínez, D., Kovacs, A., Gómez, R.: Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 10, 1936–1941 (2017). https://doi.org/10.1039/c7ee01735a

Jeong, G., Kim, H., Sug Lee, H., et al.: A room-temperature sodium rechargeable battery using an SO2– based nonflammable inorganic liquid catholyte. Sci. Rep. 5, 12827 (2015). https://doi. org/10.1038/srep12827

Huang Z. et al. High-energy room-temperature sodium–sulfur and sodium–selenium batteries for sustainable energy storage //Electrochemical Energy Reviews. – 2023. – Т. 6. – №. 1. – С. 21.

Nashr etilgan

2026-01-23

Qanday iqtibos keltirish

SODIUM–SULFUR AND SODIUM–SELENIUM BATTERIES OPERATING AT ROOM TEMPERATURE. (2026). Scientific Journal of the Fergana State University, 31(3). https://doi.org/10.56292/SJFSU/vol31_iss3/a%p

Xuddi shu muallif (lar) ning eng ko'p o'qilgan maqolalari

1 2 > >>