logo
O‘zbekcha

НАТРИЙ-СЕРНЫЕ И НАТРИЙ-СЕЛЕНОВЫЕ АККУМУЛЯТОРЫ, РАБОТАЮЩИЕ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

Авторы

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss3/a%25p

Ключевые слова:

натриево-серный аккумулятор, натрий-селеновый аккумулятор, карбонатный электролит, эфирный электролит, модификация электролита, накопление энергии

Аннотация

Аккумуляторные батареи на основе натрия, особенно системы натрий-сера (Na-S) и натрий-селен (Na-Se), привлекают внимание как будущие технологии хранения энергии из-за их низкой стоимости и стабильности. В этой статье рассматриваются последние литературные данные о химическом составе, стратегиях модификации и электрохимических характеристиках электролитов на основе карбонатов и эфиров для батарей Na–S и Na–Se. Сравниваются добавки электролитов, механизмы ионного транспорта и подходы к стабильности межфазной границы электрод-электролит, а также обсуждаются перспективные направления создания электролитов для этих систем.

Биографии авторов

  • , Farg‘ona davlat texnika universiteti

    Farg‘ona davlat texnika universiteti doktoranti (DSc)

  • , Farg‘ona davlat texnika universiteti

    Farg‘ona davlat texnika universiteti, kimyo fanlari falsafa doktori, assistent

Библиографические ссылки

Goikolea, E., Palomares, V., Wang, S.J., et al.: Na-ion batteries: approaching old and new challenges. Adv. Energy Mater. 10, 2002055 (2020). https://doi.org/10.1002/aenm.202002055

Wang, Y.Z., Zhou, D., Palomares, V., et al.: Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13, 3848–3879 (2020). https://doi. org/10.1039/d0ee02203a

Rai, A., Esplin, R., Nunn, O., et al.: The times they are a changin’: current and future trends in electricity demand and supply. Electr. J. 32, 24–32 (2019). https://doi.org/10.1016/j.tej. 2019.05.017

Lachuriya, A., Kulkarni, R.: Stationary electrical energy storage technology for global energy sustainability: a review. In: 2017 international conference on nascent technologies in engineering (ICNTE), Vashi, India (2017)

Papaefthymiou, G., Dragoon, K.: Towards 100% renewable energy systems: uncapping power system flexibility. Energy Policy 92, 69–82 (2016). https://doi.org/10.1016/j.enpol.2016. 01.025

Hameer, S., van Niekerk, J.L.: A review of large-scale electrical energy storage. Int. J. Energy Res. 39, 1179–1195 (2015). https:// doi.org/10.1002/er.3294

Kousksou, T., Bruel, P., Jamil, A., et al.: Energy storage: applications and challenges. Sol. Energy Mater. Sol. Cells 120, 59–80 (2014). https://doi.org/10.1016/j.solmat.2013.08.015

Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochem. Energy Rev. 5, 112–144 (2022). https://doi.org/10.1007/s41918-021-00110-w

Wang, H., Matios, E., Luo, J.M., et al.: Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem. Soc. Rev. 49, 3783–3805 (2020). https://doi.org/10.1039/d0cs00033g

Wang, Y.X., Zhang, B.W., Lai, W.H., et al.: Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829

Jaumaux, P., Wu, J.R., Shanmukaraj, D., et al.: Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644 (2021). https://doi.org/10.1002/adfm.202008644

Liang, Y.L., Dong, H., Aurbach, D., et al.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0

Sun, B., Xiong, P., Maitra, U., et al.: Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 32, 1903891 (2020). https://doi.org/10.1002/adma. 201903891

Perveen, T., Siddiq, M., Shahzad, N., et al.: Prospects in anode materials for sodium ion batteries: a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser. 2019.109549

Kumar, D., Kuhar, S.B., Kanchan, D.K.: Room temperature sodium–sulfur batteries as emerging energy source. J. Energy Storage 18, 133–148 (2018). https://doi.org/10.1016/j.est.2018. 04.021

Hueso, K.B., Armand, M., Rojo, T.: High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734 (2013). https://doi.org/10.1039/c3ee24086j

Duan, J., Tang, X., Dai, H.F., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4

US Geological Survey. Mineral Commodity Summaries 2022. Reston, VA (2022). https://doi.org/10.3133/mineral2022

Hans Wedepohl, K.: The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995). https://doi. org/10.1016/0016-7037(95)00038-2

Haynes, W.M., Lide, D.R., Bruno, T.J.: CRC handbook of chemistry and physics. CRC Press, Boca Raton (2016). https://doi.org/ 10.1201/9781315380476

Ma, D.T., Li, Y.L., Yang, J.B., et al.: New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferro-electric-encapsulated cathode: toward ultrastable free-standing room temperature sodium–sulfur batteries. Adv. Funct. Mater. 28, 1705537 (2018). https://doi.org/10.1002/adfm.201705537

Shiraz, M.H.A., Zhao, P., Liu, J.: High-performance sodium–selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. J. Power Sources 453, 227855 (2020). https://doi.org/10.1016/j. jpowsour.2020.227855

Wang, Y.X., Wang, Y.X., Wang, Y.X., et al.: Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 5, 2547–2570 (2019). https://doi.org/10.1016/j. chempr.2019.05.026

Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https:// doi.org/10.1039/c6cs00776g

Kumar, D., Rajouria, S.K., Kuhar, S.B., et al.: Progress and prospects of sodium–sulfur batteries: a review. Solid State Ion. 312, 8–16 (2017). https://doi.org/10.1016/j.ssi.2017.10.004

Manthiram, A., Yu, X.W.: Ambient temperature sodium–sulfur batteries. Small 11, 2108–2114 (2015). https://doi.org/10.1002/ smll.201403257

Wen, Z.Y., Hu, Y.Y., Wu, X.W., et al.: Main challenges for high performance NAS battery: materials and interfaces. Adv. Funct. Mater. 23, 1005–1018 (2013). https://doi.org/10.1002/adfm. 201200473

Zhang, F., Xiong, P., Guo, X., et al.: A nitrogen, sulphur dualdoped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium–selenium batteries. Energy Storage Mater. 19, 251–260 (2019). https://doi. org/10.1016/j.ensm.2019.03.019

Li, Q.Q., Liu, H.G., Yao, Z.P., et al.: Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10, 8788–8795 (2016). https://doi.org/10.1021/acsna no.6b04519

Huang, X.L., Zhou, C.F., He, W.D., et al.: An emerging energy storage system: advanced Na–Se batteries. ACS Nano 15, 5876– 5903 (2021). https://doi.org/10.1021/acsnano.0c10078

Parant, J.P., Olazcuaga, R., Devalette, M., et al.: Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J. Solid State Chem. 3, 1–11 (1971). https://doi.org/10.1016/0022-4596(71) 90001-6

Nagelberg, A.S., Worrell, W.L.: A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 29, 345–354 (1979). https://doi.org/10.1016/0022-4596(79)90191-9

Braconnier, J.J., Delmas, C., Fouassier, C., et al.: Comporte- ment electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980). https://doi.org/10.1016/0025-5408(80) 90199-3

Yoshino, A.: The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012). https://doi.org/10.1002/anie. 201105006

Zubi, G., Dufo-López, R., Carvalho, M., et al.: The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser. 2018.03.002

Yang, C.P., Xin, S., Yin, Y.X., et al.: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem. Int. Ed. 52, 8363–8367 (2013). https://doi.org/10.1002/ anie.201303147

Kummer, J. T., Neill, W.: Google Patents (1968)

Xin, S., Yin, Y.X., Guo, Y.G., et al.: A high-energy room-temperature sodium–sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126

NGK Insulators (2021) About NGK history. https://www.ngk- insulators.com/en/info/history/. Accessed 23 Feb 2023

NGK Insulators (2009) The vendors’ perspective on barriers & issues encountered in U.S. deployment. https://efiling.energy.ca. gov/GetDocument.aspx?tn=50786&DocumentContentId=9147. Accessed 23 Feb 2023

Abraham, K., Rauh, R., Brummer, S.: A low temperature Na–S battery incorporating a soluble S cathode. Electrochim. Acta 23, 501–507 (1978). https://doi.org/10.1016/0013-4686(78)85027-0

Sciamanna, S.F., Lynn, S.: Sulfur solubility in pure and mixed organic solvents. Ind. Eng. Chem. Res. 27, 485–491 (1988). https://doi.org/10.1021/ie00075a019

Lu, X.C., Kirby, B.W., Xu, W., et al.: Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299–306 (2013). https://doi.org/10.1039/c2ee23606k

Xu, X.F., Zhou, D., Qin, X.Y., et al.: A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10. 1038/s41467-018-06443-3

Yang, C.P., Yin, Y.X., Guo, Y.G.: Elemental selenium for electro-chemical energy storage. J. Phys. Chem. Lett. 6, 256–266 (2015). https://doi.org/10.1021/jz502405h

Ding, J., Zhou, H., Zhang, H.L., et al.: Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ. Sci. 10, 153–165 (2017). https://doi.org/10.1039/c6ee02274j

Chawla, N., Safa, M.E.: Sodium batteries: a review on sodium– sulfur and sodium–air batteries. Electronics 8, 1201 (2019). https://doi.org/10.3390/electronics8101201

Wang, N.N., Wang, Y.X., Bai, Z.C., et al.: High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 13, 562–570 (2020). https://doi.org/10.1039/c9ee03251g

Lee, B., Paek, E., Mitlin, D., et al.: Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642

Wang, C.L., Wang, H., Hu, X.F., et al.: Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium–sulfur batteries. Adv. Energy Mater. 9, 1803251 (2019). https://doi.org/10.1002/aenm.201803251

Ponrouch, A., Monti, D., Boschin, A., et al.: Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015). https://doi.org/10.1039/c4ta04428b

Cresce, A.V., Russell, S.M., Borodin, O., et al.: Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19, 574–586 (2017). https://doi.org/10.1039/ c6cp07215a

Abraham, K.M.: How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5, 3544–3547 (2020). https://doi.org/10.1021/acsenergylett.0c02181

Eshetu, G.G., Elia, G.A., Armand, M., et al.: Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv. Energy Mater. 10, 2000093 (2020). https://doi.org/10.1002/aenm.202000093

Ponrouch, A., Marchante, E., Courty, M., et al.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572 (2012). https://doi.org/10.1039/c2ee22258b

Zhao, X.M., Yan, Y.W., Ren, X.X., et al.: Trimethyl phosphate for nonflammable carbonate-based electrolytes for safer room-temperature sodium–sulfur batteries. ChemElectroChem 6, 1229–1234 (2019). https://doi.org/10.1002/celc.201801833

Wu, J.X., Liu, J.P., Lu, Z.H., et al.: Non-flammable electrolyte for dendrite-free sodium–sulfur battery. Energy Storage Mater. 23, 8–16 (2019). https://doi.org/10.1016/j.ensm.2019.05.045

di Lecce, D., Minnetti, L., Polidoro, D., et al.: Triglyme-based electrolyte for sodium-ion and sodium–sulfur batteries. Ionics 25, 3129–3141 (2019). https://doi.org/10.1007/s11581-019-02878-w

Eng, A.Y.S., Kumar, V., Zhang, Y.W., et al.: Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv. Energy Mater. 11, 2003493 (2021). https://doi.org/ 10.1002/aenm.202003493

Zhang, J., Wang, D.W., Lv, W., et al.: Ethers illume sodiumbased battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8, 1801361 (2018). https://doi.org/10.1002/ aenm.201801361

Li, P.R., Ma, L., Wu, T.P., et al.: Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li–S and Na–S batteries. Adv. Energy Mater. 8, 1800624 (2018). https://doi.org/10.1002/aenm.201800624

Zhang, H., Diemant, T., Qin, B.S., et al.: Solvent-dictated sodium sulfur redox reactions: investigation of carbonate and ether elec-trolytes. Energies 13, 836 (2020). https://doi.org/10.3390/en130 40836

Ryu, H., Kim, T., Kim, K., et al.: Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J. Power Sources 196, 5186–5190 (2011). https://doi.org/10.1016/j.jpowsour.2011.01. 109

Liu, H.W., Lai, W.H., Yang, Q.R., et al.: Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries. Nano Micro Lett. 13, 1–14 (2021). https://doi. org/10.1007/s40820-021-00648-w

Kohl, M., Borrmann, F., Althues, H., et al.: Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium–sulfur full cell batteries. Adv. Energy Mater. 6, 1502185 (2016). https://doi.org/10.1002/aenm.201502185

Lin, Z., Liu, Z.C., Fu, W.J., et al.: Phosphorous pentasulfide as a novel additive for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 23, 1064–1069 (2013). https://doi.org/10. 1002/adfm.201200696

Yu, X.W., Manthiram, A.: Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118, 22952–22959 (2014). https://doi.org/10.1021/ jp507655u

Zhou, D., Tang, X., Guo, X., et al.: Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59, 16725–16734 (2020). https://doi.org/10.1002/anie.20200 7008

Medenbach, L., Hartmann, P., Janek, J., et al.: A sodium polysulfide battery with liquid/solid electrolyte: improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol. 8, 1901200 (2020). https://doi. org/10.1002/ente.201901200

Yu, X.W., Manthiram, A.: Ambient-temperature sodium–sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5, 1500350 (2015). https://doi.org/10.1002/aenm.20150 0350

Kumar, A., Ghosh, A., Roy, A., et al.: High-energy density room temperature sodium–sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays. Energy Storage Mater. 20, 196– 202 (2019). https://doi.org/10.1016/j.ensm.2018.11.031

Kumar, A., Ghosh, A., Forsyth, M., et al.: Free-radical catalysis and enhancement of the redox kinetics for room-temperature sodium–sulfur batteries. ACS Energy Lett. 5, 2112–2121 (2020). https://doi.org/10.1021/acsenergylett.0c00913

Reddy, B., Premasudha, M., Oh, K.M., et al.: Hydrothermal synthesis of MoS2/rGO composite as sulfur hosts for room temperature sodium–sulfur batteries and its electrochemical properties. J. Energy Storage 39, 102660 (2021). https://doi. org/10.1016/j.est.2021.102660

Basile, A., Hilder, M., Makhlooghiazad, F., et al.: Sodium energy storage: ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies (adv. energy mater. 17/2018). Adv. Energy Mater. 8, 1870078 (2018). https://doi.org/10.1002/ aenm.201870078

Stettner, T., Balducci, A.: Protic ionic liquids in energy storage devices: past, present and future perspective. Energy Storage Mater. 40, 402–414 (2021). https://doi.org/10.1016/j.ensm.2021. 04.036

Yang, Q.W., Zhang, Z.Q., Sun, X.G., et al.: Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47, 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h

Nozawa, R., Harimoto, R., Tsuchiya, M., et al.: Sodium-sulfur batteries with room-temperature ionic liquid electrolytes. Elec- trochem Soc Meeting Abstr 222. 2, 22 (2012)

Wei, S.Y., Xu, S.M., Agrawral, A., et al.: A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016). https://doi.org/10.1038/ncomms11722

Wang, D., Hwang, J., Chen, C.Y., et al.: A β-alumina/inor- ganic ionic liquid dual electrolyte for intermediate-temperature sodium–sulfur batteries. Adv. Funct. Mater. 31, 2105524 (2021). https://doi.org/10.1002/adfm.202105524

Ruiz-Martínez, D., Gómez, R.: The liquid ammoniate of sodium iodide as an alternative electrolyte for sodium ion batteries: the case of titanium dioxide nanotube electrodes. Energy Storage Mater. 22, 424–432 (2019). https://doi.org/10.1016/j.ensm.2019. 07.036

Ruiz-Martínez, D., Kovacs, A., Gómez, R.: Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 10, 1936–1941 (2017). https://doi.org/10.1039/c7ee01735a

Jeong, G., Kim, H., Sug Lee, H., et al.: A room-temperature sodium rechargeable battery using an SO2– based nonflammable inorganic liquid catholyte. Sci. Rep. 5, 12827 (2015). https://doi. org/10.1038/srep12827

Huang Z. et al. High-energy room-temperature sodium–sulfur and sodium–selenium batteries for sustainable energy storage //Electrochemical Energy Reviews. – 2023. – Т. 6. – №. 1. – С. 21.

Опубликован

2026-01-23

Как цитировать

НАТРИЙ-СЕРНЫЕ И НАТРИЙ-СЕЛЕНОВЫЕ АККУМУЛЯТОРЫ, РАБОТАЮЩИЕ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ. (2026). Научный вестник Ферганский государственный университета, 31(3). https://doi.org/10.56292/SJFSU/vol31_iss3/a%p

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>