logo
O‘zbekcha

MAGNIT MAYDONDAGI P-N OʻTISH KUCHLANISHINING TURLI TEMPERATURALARDA OʻZGARISHI

Mualliflar

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss6/a212

Kalit so‘zlar:

p-n oʻtish, magnit maydon, volt-amper xarakteristika, Xoll effekti, harorat, Xoll kuchlanishi, harakatchanlik.

Annotatsiya

Hozirgi kunda texnika-texnologiyalar hayotimizda katta rol o’ynaydi. p-n oʻtishli diod va tranzistorlar texnikada keng qoʻllanilgani uchun ularning parametrlarini tashqi ta’sirlarga sezgirligini va xarakteristikalarini oʻrganish juda muhim hisoblanadi. Bu ishda p-n oʻtish volt-amper xarakteristikasiga, kuchlanishiga va potensial to’siq balandligiga magnit maydonning ta’siri koʻrib chiqilgan. Magnit maydon ortib borganda, volt-amper xarakteristikasi oʻng tomonga siljib,qarshilik ortib, kuchlanishning ham ortib borishi tajribalarda kuzatilgan va buni Xoll kuchlanishi xisobiga deb tushuntirilgan. Qarshilikni ortishi esa magnitoqarshilik effekti bilan bogʻliq. p-n oʻtish kuchlanishining magnit maydonga bogʻliq ifodasi keltirilgan va turli haroratlarda uning oʻzgarishlari ham keltirilgan. Tajribalarda harorat pasayganda magnit maydon boʻlgan va boʻlmagan hollarda kuchlanishlar farqi katta boʻlgani kuzatilgan. Harorat past boʻlganda va magnit maydoni ortib borganda kuchlanishning magnit maydonga bogʻliq ozgarishini xisobga oluvchi ifoda keltirilgan. Bu ifoda yordamida olingan grafiklar tajriba natijalari kabi harorat pasayganda kuchlanishning ortib borishini namoyon qilgan. Bu bogʻliqlikni tushuntirishda Xoll koiffitsiyentining zaryad tashuvchilar xarakatchanligi bilan bogʻliq xolda oʻzgarishidan foydalandik. Shunda Xoll kuchlanishi ham harorat kamayishi bilan ortib borishiga erishdik. Bizning olgan natijalarimiz tajriba natijalariga yaqin boʻlgan.  Olingan nazariy natijalar tajriba natijalari bilan solishtirilgan va xulosalar olingan.

Muallif haqida

  • Muxitdinova Feruza Rustam qizi , Namangan Davlat Texnika Universiteti

    Namangan Davlat Texnika Universiteti Fizika kafedrasi katta oʻqituvchisi

Adabiyotlar

1. Tuan T., Kuo D., Li Ch., Li G. Effect of Temperature Dependence on Electrical Characterization of p-n GaN Diode Fabricated by RF Magnetron Sputtering// Materials Sciences and Applications (2015) 6 (9) pp. 809–817.

2. Ding D., Dai X., Wang Ch., Diao D. Temperatura dependent crossover between positive and negative magnetoresistance in graphene nanocrystallines embedded carbon film // Carbon (2020) Vol. 163 pp. 19-25.

3. Wan C., Zhang X., Gao X., Wang J., Tan X., Geometrical enhancement of low-field magnetoresistance in silicon // Nature, (2011), 477, pp. 304-307.

4. Wang T., Yang D., Si M., Wang F., Zhou Sh., Xue D. Magnetoresistance Amplification Effect in Silicon Transistor Device // Adv. Electron. Mater. (2016), 160017. pp. 1-5

5. Delmo M., Kasai S., Kobayashi1, Ono T. Space-charge-effect-induced large magnetoresistance in Silicon // Journal of Physics: Conference Series (2009). Vol. 193 012001 pp.1-4.

6. G. Gulyamov, G. Majidova, F. Muxitdinova, “Influence of a magnetic field on the characteristics of a p-n junction diode” G. Majidova, F. Muxitdinova, “Influence of a magnetic field on the characteristics of a p-n junction diode” Journal of Applied Science and Engineering, (2023) 27, 1, Pp. 1911-1917

7. Gulyamov, G., Dadamirzaev, G., Dadamirzayev, M., & Kosimova, M. The influence of the microwave field on the characteristics of the pn junction. Euroasian Journal of Semiconductors Science and Engineering, (2020). 2(4), 7.

8. Gulyamov, G., Dadamirzaev, M. G., Kosimova, M., & Uktamova, M.. Thermophotoemf of hot charge carriers at pn-junctions under exposure to a microwave field and light. Scientific-technical journal, (2020) 3(5), 66-70.

9. Wang T., Si M., Yang D., Shi Z., Wang F., Yang Z., Zhoub Sh., Xue D. Angular dependence of the magnetoresistance effect in a silicon based p–n junction device // Nanoscale. 2014. Vol. 6, pp. 3978-3983.

10. Xu J., Ma M., Sultanov M., Xiao Z. Negative longitudinal magnetoresistance in gallium arsenide quantum wells // Nature Communications. 2019. Vol. 10. 287 pp. 1-7.

11. Delmo M., Shikoh E., Shinjo T., Shiraishi M. Bipolar-driven large linear magnetoresistance in silicon at low magnetic fields // Physical Review B 2013. Vol. 87, 245301 pp. 1-4.

12. Cao Y., Yang D., Si M., Shi H., Xue D. Model for large magnetoresistance effect in p–n junctions // Appl. Phys. Express 2018 Vol. 11 061304 pp. 1-8.

13. Yang D., Wang T., Sui W., Si M., Guo D., Shi Z., Wang F., Xue D. Temperatura-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions // Scientific Reports. 2015. Vol. 5, 11096 pp. 1-7.

14. Liu Y., Wang H., Jin X., Zhang M. The space charge limited current and huge linear magnetoresistance in silicon // Scientific Reports 2018. Vol. 8 775 pp. 1-6

15. Шалимова К. В., Физика полупроводников //М.Энергоатомиздат, 1985, с. 113.

16. BB, S., GN, M., & FR, M. (2021). Effect of ultrahigh frequency fields on the photoelectric characteristics of pn conducting semiconductor diodes. Euroasian Journal of Semiconductors Science and Engineering, 3(2), 29-34.

Yuklab olishlar

Nashr etilgan

2026-02-04

Qanday iqtibos keltirish

MAGNIT MAYDONDAGI P-N OʻTISH KUCHLANISHINING TURLI TEMPERATURALARDA OʻZGARISHI. (2026). Scientific Journal of the Fergana State University, 31(6), 212. https://doi.org/10.56292/SJFSU/vol31_iss6/a212