TO‘G‘RI TO‘RTBURCHAKLI SOHADA BUZILADIGAN SUBDIFFUZIYA TENGLAMASI UCHUN ARALASH CHEGARAVIY MASALANING YECHILISHI
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss6/a201Kalit so‘zlar:
kasr tartibli hisob, buziladigandifferensial tenglama, aralash masala, kasr tartibli Kaputo differensial operatori, spektral masala.Annotatsiya
Ushbu maqolada to‘g‘ri to‘rtburchak sohada buziladigan subdiffuziya tenglamasi uchun aralash chegaraviy masala o‘rganilgan. O‘zgaruvchilarni ajratish usuli yordamida fazoviy o‘zgaruvchiga bog‘liq bo‘lgan oddiy differensial tenglama uchun spektral masala hosil qilinadi. Hosil bo‘lgan spektral masalaning xos qiymatlari va xos funksiyalarining mavjudligi musbat differensial operatorlar nazariyasiga asoslanib isbotlangan. Masalaning yechimi Furye qatori ko‘rinishida qurilgan. Olingan qatorning yaqinlashuvchiligi isbotlangan hamda yechimning yagonaligi xos funksiyalar sistemasining to‘laligidan foydalanib asoslangan.
Adabiyotlar
1. V.V. Uchaikin, Fractional derivatives for Physicists and Engineers. Vol. 1, Background and Theory. Vol. 2, Application, Springer. 2013.
2. R. Hilfer, aditor: Applications of fractional calculas in physics. Singapore, World Scientific. 2000.
3. S. Umarov, M. Hahn, K. Kobayashi, Beyond the triangle: Browian motion, Ito calculas, and Fokker-Plank equation-fractional generalizations. World Scientific. 2017.
4. Ji Sh., Huang R. On the Budyko-Sellers climate model with mushy region // Journal of Mathematical Analysis and Applications. 2016. Vol. 434. Issue 1, pp. 581-598.https://doi.org/10.1016/j.jmaa.2015.09.028
5. Camasta A., Fragnelli G. Boundary controllability for a degenerate beam equation // Mathematical Methods in the Applied Sciences. 2024. Vol. 47. Issue 2, pp. 907-927. https://doi.org/10.1002/mma.9692
6. Camasta A., Fragnelli G. A stability result for a degenerate beam equation // SIAM Journal on Control and Optimization. 2024. Vol. 62. Issue 1, pp. 630-649. https://doi.org/10.1137/23M1565668
7. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam etc. (2006).
8. Podlubny I. Fractional Differential Equations. United States, Academic Press. -1999.
9. S. G. Mikhlin. Variational Methods in Mathematical Physics, Pergamon Press, New York, 1964.
10. V.I. Kondrashov, On the theory of boundary-value problems with boundary conditions containing parameters, Dokl. Akad. Nauk SSSR, 142(6) (1962), pp. 1243–1246.
Yuklab olishlar
Nashr etilgan
Son
Bo‘lim
Litsenziya
Mualliflik huquqi (c) 2025 Scientific journal of the Fergana State University

Ushbu ish Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Xalqaro litsenziyasi ostida litsenziyalangan.