РЕГУЛЯЦИЯ РАЗВИТИЯ ВОЛОКНА ХЛОПЧАТНИКА (GOSSYPIUM HIRSUTUM L.) МИКРОРНК
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss6/a243Ключевые слова:
G. hirsutum L., Far Red Related Sequencing 10 (FRS10), RNA interference, Coker-312.Аннотация
Хлопчатник (Gossypium spp.) — одна из основных технических культур, имеющая важное экономическое и научное значение в мировом масштабе. Он выращивается в основном ради получения высококачественного природного волокна. В настоящее время известно более 50 диких, полудиких и культурных видов рода Gossypium, среди которых четыре вида (G. hirsutum L., G. barbadense L., G. arboreum L. и G. herbaceum L.) культивируются человеком. Среди них G. hirsutum L. является наиболее распространённым видом, на долю которого приходится более 90 % мирового производства хлопка. Этот вид отличается высокой агробиологической потенцией, адаптивностью к различным климатическим условиям, устойчивостью к болезням и высоким качеством волокна. Поэтому он рассматривается как основной объект для селекции, генетической модификации и современных биотехнологических подходов в производстве хлопка. За последние два десятилетия технологии молекулярной биотехнологии позволили глубоко исследовать геном этого рода. В данной статье был изучен ген FRS10 в геноме хлопчатника G. hirsutum L. с использованием технологии РНКи. Снижение экспрессии гена FRS10 проявило фенотип ранней и полной всхожести. Всхожесть оказалась на 3 дня раньше по сравнению с контрольными растениями, а процент всхожести составил 99 %. Подобные результаты открывают перспективы эффективного использования данного гена в генной инженерии и селекционной практике.
Библиографические ссылки
1. Anonymous (2008). Cotton statistics at a glance. Ministry of Agriculture, India, pp: 7-8
2. Constable, G., Llewellyn, D., Walford, S. A., and Clement, J. D. (2014). “Cotton breeding for fiber quality im-provement,” in Industrial Crops: Breeding for
BioEnergy and Bioproducts, eds V. M. V. Cruz and D. A. Dierig (New York,
NY: Springer-Verlag), 191–232. doi: 10.1007/978-1-4939-1447-0_10
3. AS Basra, CP Malik. Development of the cotton fiber. Int. Rev. Cytol, 89 (1984), pp. 65-113
4. James McD. Stewart. FIBER INITIATION ON THE COTTON OVULE (GOSSYPIUM HIRSUTUM). American Journal of Botany.Vol. 62, No. 7 (Aug., 1975), pp. 723-730 (8 pages). https://doi.org/10.1002/j.1537-2197.1975.tb14105.x
5. SA Walford, Y Wu, DJ Llewellyn, ES Dennis. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 65 (2011), pp. 785-797
6. YL Ruan, DJ Llewellyn, RT Furbank. Suppression of sucrose synthase gene expression represses cotton fi-ber cell initiation, elongation, and seed development. Plant Cell, 15 (2003), pp. 952-964
7. M Luo, Y Xiao, X Li, X Lu, W Deng, D Li, L Hou, M Hu, Y Li, Y Pei. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J, 51 (2007), pp. 419-430
8. Y Li, D Liu, L Tu, X Zhang, L Wang, L Zhu, J Tan, F Deng. Suppression of GhAGP4 gene expression re-pressed the initiation and elongation of cotton fiber. Plant Cell Rep, 29 (2010), pp. 193-202
9. Xue-Bao Li, Lin Cai, Ning-Hui Cheng, and Jian-Wei Liu. Molecular Characterization of the Cotton GhTUB1 Gene That Is Preferentially Expressed in Fiber. Plant Physiol. 2002 Oct; 130(2): 666–674. doi: 10.1104/pp.005538
10. Huaitong Wu, Yue Tian, Qun Wan, Lei Fang, Xueying Guan, Jiedan Chen, Yan Hu, Wenxue Ye, Hua Zhang, Wangzhen Guo, Xiaoya Chen, Tianzhen Zhang. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. Volume217, Issue2.January 2018.Pages 883-895. https://doi.org/10.1111/nph.14844.
11. Abdurakhmonov, I., Buriev, Z., Saha, S. et al. Phytochrome RNAi enhances major fibre quality and agro-nomic traits of the cotton Gossypium hirsutum L. Nat Commun 5, 3062 (2014). https://doi.org/10.1038/ncomms4062
12. Taliercio EW, Boykin D. Analysis of gene expression in cotton fiber initials. BMC Plant Biol. 2007; 7:22.
13. Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001; 127:1361–1366.
14. Jacob-Wilk D, Kurek I, Hogan P, Delmer DP. The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA. 2006; 103:12191–12196.
15. Wu Z, Soliman KM, Bolton JJ, Saha S, Jenkins NJ. Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh) Funct Integr Genomics. 2007; 8:165–174.
16. Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fibre development. Ann Bot. 2007; 100:1391–401.
17. Ibrokhim Y Abdurakhmonov, Eric J Devor, Zabardast T Buriev, Lingyan Huang, Abdusalom Makamov, Shukhrat E Shermatov, Tohir Bozorov, Fakhriddin N Kushanov, Gafurjon T Mavlonov, and Abdusattor Abdukarimov. Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC Plant Biol. 2008; 8: 93. doi: 10.1186/1471-2229-8-93
18. Tengyu Li and et al. Integrated analysis of mRNA and miRNA transcriptomes reveals the mechanism of regulatory interspecific fiber heterosis. March 2023 Industrial Crops and Products 197:116622 doi:10.1016/j.indcrop.2023.116622.
19. X. Chen. Small RNAs-secrets and surprises of the genome. Plant J, 61 (2010), pp. 941-958
20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell. 2004;17:1658–1673.
21. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementarity to lin-14. Cell. 1993;75:843–54.
22. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 medi-ates temporal pattern-formation in C. elegans. Cell. 1993;75:855–62.
23. A Hamilton, O Voinnet, L Chappell, D Baulcombe. Two classes of short interfering RNA in RNA silencing. EMBO J, 21 (2002), pp. 4671-4679
24. A Peragine, M Yoshikawa, G Wu, HL Albrecht, RS Poethig. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev., 18 (2004), pp. 2368-2379.
25. O Borsani, J Zhu, PE Verslues, R Sunkar, JK Zhu. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123 (2005), pp. 1279-1291
26. Joëlle V. Fritz, Anna Heintz-Buschart, Anubrata Ghosal, Linda Wampach, Alton Etheridge, David Galas, and Paul Wilmes. Sources and functions of extracellular small RNAs in human circulation. Annu Rev Nutr. 2016 Jul 17; 36: 301–336.doi: 10.1146/annurev-nutr-071715-050711
27. X. Chen. Small RNAs and Their Roles in Plant Development. Annu Rev Cell Dev Biol. 2009; 25: 21–44. doi: 10.1146/annurev.cellbio.042308.113417
28. Quesada V, Dean C, Simpson GG. Regulated RNA processing in the control of Arabidopsis flowering. Int J Dev Biol. 2005;49:773–780.
29. Pandey SP, Shahi P, Gase K, Baldwin IT. Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA. 2008;105:4559–64.
30. Julien Curaba, Mohan B. Singh, Prem L. Bhalla. miRNAs in the crosstalk between phytohormone signalling pathways. Journal of Experimental Botany, Volume 65, Issue 6, April 2014, Pages 1425–1438, https://doi.org/10.1093/jxb/eru002
31. Nancy A. Eckardt. MicroRNAs Regulate Auxin Homeostasis and Plant Development. Plant Cell. 2005 May; 17(5): 1335–1338. doi: 10.1105/tpc.105.033159.
32. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., et al. (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5 757–768. 10.1105/tpc.5.7.757
33. Chiara Menon, Cornelia Klose, Andreas Hiltbrunner. Arabidopsis FHY1 and FHY1-LIKE Are Not Required for Phytochrome A Signal Transduction in the Nucleus. Plant Communications. Volume 1, Issue 2, 9 March 2020, 100007. https://doi.org/10.1016/j.xplc.2019.100007
34. Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H. Transposase-derived transcription factors regu-late light signaling in Arabidopsis. Science. 2007 Nov 23; 318(5854):1302-5.
35. Lin Ma and Gang Li. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) Family Pro-teins in Arabidopsis Growth and Development. Front Plant Sci. 2018; 9: 692. doi: 10.3389/fpls.2018.00692
36. Lin R, Wang H. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 2004 Dec; 136(4):4010-22.
37. Dellaporta S.L., Wood J., Hick, J.P. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.
38. P. C. Nautiyal, K. Sivasubramaniam, and Malavika Dadlani. Seed Dormancy and Regulation of Germination. 2023. Seed Science and Technology. https://doi.org/10.1007/978-981-19-5888-5_3
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Научный вестник Ферганский государственный университета

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
Как цитировать
Наиболее читаемые статьи этого автора (авторов)
- Usmanov Dilshod Erkinbayevich, Аbdukarimov Sharofiddin Sayfidinovich, Sobirov Botirjon Masharif o‘g‘li, Azimov Avazxon Abbasovich, Abdug‘afforov Azamat Tojiboy o‘g‘li, Juraqulov Durbekjon Saydulla o‘g‘li, Buriev Zabardast Tojiboevich, ИДЕНТИФИКАЦИЯ ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА ГЕНОВ GHFHY3/FAR1 У ВИДОВ ХЛОПЧАТНИКА (GOSSYPIUM SPP) С ИСПОЛЬЗОВАНИЕМ СРАВНИТЕЛЬНО-ГО БИОИНФОРМАТИЧЕСКОГО АНАЛИЗА , Научный вестник Ферганский государственный университета: № 5 (2025): FarDu ilmiy xabarlar jurnali (TABIIY FANLAR)