OBTAINING NANOFIBERS BASED ON CHITOSAN AND ASCORBIC ACID AND THEIR PROSPECTS FOR APPLICATION

Main Article Content

Кудрат Пирниязов
Rakiya Milusheva
Sayyora Rashidova

Abstract

The work describes the possibility of forming nanofibers based on chitosan with ascorbic acid, and presents the possibility of forming nanofibers from a polymer-polymer mixture using the electrospinning method. The biologically active properties of non-woven nanomaterials obtained on the basis of chitosan and synthetic polymers, in particular polycaprolactone, polyethylene oxide and polyvinyl alcohol with ascorbic acid, have been shown. The possibilities of forming nanofibers and nanoparticles in various solvents using the electrospinning method were assessed.

Article Details

How to Cite
Пирниязов, К., Milusheva, R., & Rashidova, S. (2024). OBTAINING NANOFIBERS BASED ON CHITOSAN AND ASCORBIC ACID AND THEIR PROSPECTS FOR APPLICATION. Scientific Journal of the Fergana State University, 30(4), 102. Retrieved from https://journal.fdu.uz/index.php/sjfsu/article/view/4245
Section
Chemistry
Author Biographies

Кудрат Пирниязов, Институт химии и физики полимеров АН РУз

Институт химии и физики полимеров АН РУз, (PhD) м.н.с.,

Rakiya Milusheva, Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan

Институт химии и физики полимеров АН РУз, к.х.н., с.н.с

Sayyora Rashidova, Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan

Институт химии и физики полимеров АН РУз, д.х.н., проф. академик

References

Badawy M.E.I., Rabea E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection // Int. J. Carbohydr. Chem. -2011. -pp. 1-29.

Poncelet D. Microencapsulation: fundamentals, methods and applications // Surface Chemistry in Biomedical and Environmental Science, Springer, The Netherlands. -2006. -pp. 23-34.

Elsabee M.Z., Naguib H.F., Morsi R.E. Chitosan based nanofibers, review // Mater. Sci. Eng. C. -2012. –vol. 32. -pp. 1711-1726.

Jayakumar R., Prabaharan M., Nair S.V., Tamura H. Novel chitin and chitosan nanofibers in biomedical applications // Biotechnol. Adv. -2010. –vol. 28. -pp. 142-150.

Kurita K. Chitin and chitosan: functional biopolymers from marine Crustaceans // Mar. Biotechnol. -2006. –vol. 8 (3). -pp. 203-226.

Vrieze S., Westbroek P., Camp T., Langenhove L. Electrospinning of chitosan nanofibrous structures: feasibility study // J. Mater. Sci. -2007. –vol. 42. -pp. 8029-8034.

Geng X., Kwon O.-H., Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution // Biomaterials. -2005. –vol. 26. -pp. 5427-5432.

Schiffman J.D., Schauer C.L. Cross-linking chitosan nanofibers // Biomacromolecules. -2007. –vol. 8. -pp. 594-601.

Schiffman J.D., Schauer C.L. One-step electrospinning of cross-linked chitosan fibers // Biomacromolecules. -2007. –vol. 8. -pp. 2665-2667.

Li L., Hsieh Y.-L. Chitosan bicomponent nanofibers and nanoporous fibers // Carbohydr. Res. -2006. –vol. 341. -pp. 374-381.

Zhou H.Y., Zhou D.J., Zhang W.F., Jiang L.J., Li J.B., Chen X.G. Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery // Front. Mater. Sci. -2011. –vol. 5(4). -pp. 367-378.

Mahoney C., Cullough M.B., Sankar J., Bhattarai N. Nanofibrous structure of chitosan for biomedical applications // J. Nanomed. Biother. Discov. -2012. –vol. 2. -pp. 102.

Yang D., Jin Y., Zhou Y., Ma G., Chen X., Lu F., Nie J. In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds // Macromol. Biosci. -2008. -vol. 8. -pp. 239-246.

Bin D., Cunhai D., Xiaoyan Y., Kangde Y. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide) // J. Biomater. Sci. Polym. Ed. -2004. –vol. 15. -pp. 797-811.

Ohkawa K., Cha D., Kim H., Nishida A., Yamamoto H. Electrospinning of chitosan // Macromol. Rapid Commun. -2004. –vol. 25. -pp. 1600-1605.

Zhou Y., Yang D., Nie J. Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions // J. Appl. Polym. Sci. -2006. –vol. 102. -pp. 5692-5697.

Agarwal S. et al. Use of electrospinning technique for biomedical applications // Polymer. -2008. –vol. 49. –pp. 5603–5621.

Matsuda А., Kagata G., Kino R., Tanaka J. Preparation of chitosan nanofiber tube by electrospinning // J. Nanosci Nanotechnol. -2007. -vol. 7(3). –pp. 852-5.

Chen F., Li X., Mo X., He C., Wang H., Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix // J. Biomater. Sci. Polym. Ed. -2008. –vol. 19. –pp. 677–91.

Kelly J.Sh., Matthew J.B. et al. Mechanical properties and cellular proliferation of electrospun collagen type II // Tissue Eng. -2004. –vol. 10(9-10). –pp. 1510-7.

Zeugolis D.I., Khew S.T., et al. Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin? // Biomaterials. -2008. –vol. 29(15). –pp. 2293-305.

Song J.H., Kim H.E., Kim H.W. Production of electrospun gelatin nanofiber by water-based co-solvent approach // J. Mater Sci Mater Med. -2008. –vol. 19. –pp. 95–102.

Wu L.L., Yuan X.Y., Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning // J. Membr. Sci. -2005. –vol. 250. –pp.167.

Duan B., Wu L., Li X., Yuan X., Li X., Zhang Y. et al. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro // Journal of Biomaterial Science, Polymer Edition. -2007. –vol. 18. –pp. 95–115.

Augustine R. et al. Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes // International Journal of Pharmaceutics. -2019. –vol. 559. -pp. 420–426.

Boateng J.S., Matthews K.H., Stevens H.N.E., Eccleston G.M. Wound healing dressings and drug delivery systems: a review // J. Pharm. Sci. -2008. –vol. 97. –pp. 2892–2923.

Augustine R., Dominic E.A., Reju I., Kaimal B., Kalarikkal N., Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing // RSC Adv. -2014. –vol. 4. –pp. 24777–24785.

Gautam, S., Dinda, A.K., Mishra, N.C. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method // Mater. Sci. Eng. -2013. –vol. C 33. –pp. 1228–1235.

Croisier F., Jerome C. Chitosan-based biomaterials for tissue engineering // Eur. Polym. J. -2013. –vol. 49. –pp. 780-792.

Shamloo A., Sarmadi M. et al. Accelerated full-thick ness wound heling via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres // Int. J. Pharm. -2018. –vol. 537. –pp. 278-289.

Kamoun, E.A., Kenawy, E.R.S., Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings // J. Adv. Res. -2017. –vol. 3. –pp. 217–233.

Shamloo, A., Sarmadi, M., Aghababaie, Z., Vossoughi, M., Accelerated full-thick-ness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres // Int. J. Pharm. -2018. –vol. 537. –pp. 278–289.

Ilyina A.V., Tikhonov V.E., Albulov A.I., Varlamov V.P. Enzymic preparation of acid-free-water-soluble chitosan // Process Biochem. -2000. –vol. 35. –pp. 563–568.

Sekar V. et al. Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling // Journal of Industrial and Engineering Chemistry. −2018. −vol. 62. –pp. 239–249.

Xuan W., Hong-cheng J., Yan-min F. et. al. An effectiveness validation: chitosan-ascorbatefor periodontal tissue healing and regeneration in a rat periodontitis model // J. Clin. Rehab. Tissue Eng. Res. -2010. –vol. 14. –pp. 2268-2272.

Robin Augustine, Pan Dan, Inbar Schlachet, Didier Rouxel, Patrick Menu, Alejandro Sosnik. Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly (epsilon-caprolactone) membranes // International Journal of Pharmaceutics. -2019. -vol. 559. –pp. 420–426.

Roqiye Naja fi -Taher, Mohammad Ali Derakhshan, Reza Faridi-Majidi and Amir Amani. Preparation of an ascorbic acid/PVA – chitosan electrospun mat: a core/shell transdermal delivery system // RSC Adv. -2015.-vol. 5. –pp. 50462–50469.

Najafi-Taher R., Derakhshan M.A., Faridi-Majidi R., Amani A. Preparation of an ascorbic acid/PVA-chitosan electrospun mat: a core/shell transdermal delivery system // RSC Adv. -2015. –vol. 5. -pp. 50462-50469.

Lin F.-H., Lin J.-Y., Gupta R. D., Tournas J.A., Burch J.A., Selim M.A., Monteiro-Riviere N.A., Grichnik J.M., Zielinski J. and Pinnell S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin // J. Invest. Dermatol. -2005. –vol. 125. –pp. 826 – 832.

Espinal-Perez L.E., Moncada B. and Castanedo-Cazares J.P. A double-blind randomized trial of 5% ascorbic acid vs. 4% hydroquinone in melisma // Int. J. Dermatol., 2004, 43, 604 – 607.

Madhaiyan K., Sridhar R., Sundarrajan S., Venugopal J. R. and Ramakrishna S. Vitamin B12 loaded polycaprolactone nanofibers: a novel transdermal route for the water soluble energy supplement delivery // Int. J. Pharm. -2013. –vo. 444. –pp. 70 – 76.

Taepaiboon P., Rungsardthong U. and Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E // Eur. J. Pharm. Biopharm. -2007. –vol. 67. –pp. 387 – 397.

Mirzaei E., Faridi-Majidi R., Shokrgozar M.A. and Asghari Paskiabi F. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold // Nanomed. J. -2014. –vol. 1. –vol. 137 – 146.

Park J.M., Kim M., Park H.S., Jang A., Min J., Kim Y.H. Immobilization of Lysozyme-CLEA onto Electrospun Chitosan Nanofiber for Effective Antibacterial Applications // Int. J. Biol. Macromol. -2013. –vol. 54. –pp. 37–43.

Nayak B. Evolution of antioxidant and anticancer efficacy of chitosan based nanoparticles // Thesis submitted to National institute of technology master degree in life science. − 2015. − P. 48.

Alishahi A., Mirvaghefi A. Shelf life and delivery enhancement of vitamin C using chitosan

nanoparticles // Food chemistry. – 2011. – pр. 935-940; Doi:10.1016/j.foodchem.2010.11.086

Ваел Ш.М. Наночастицы хитозана как носители биологически активных веществ: автореф. дисс. … канд. мед. наук. 02.00.06-высокомолекулярные соединения. – М., 2012.

Пирниязов К.К., Милушева Р.Ю., Ашуров Н.Ш., Рашидова С.Ш. Структурные свойства нановолокон хитозана Bombyx mori // Международная конференция по теме “Фундаментальные и прикладные аспекты исследований хитина и его производных”. –Ташкент, 2-3 августа 2023 г. –С. 75-77.

Milusheva R.Yu., Pirniyazov K.K., Rashidova S.Sh. Electrospinning of nanofibers from Bombyx mori chitosan solutions // International scientific conference “Actual problems of the chemistry of natural compounds”. –Tashkent, 2023. –pp. 307.

Пирниязов К.К., Рашидова С.Ш. «Свойства наноаскорбат хитозана Bombyx mori» Материалы Казахско-Узбекского Симпозиума «Современные проблемы науки о полимерах». –С. 86-88.

Добровольская И.П., Лебедева И.О., Юдин В.Е., Попрядухин П.В., Иванькова Е.М., Елоховский В.Ю. Электроформование композиционных нановолокон на основе хитозана, полиэтиленоксида и нанофибрилл хитина // Высокомолекулярные соединения. Серия А.-2016.-том 58, № 2. -С. 1–9.