logo
O‘zbekcha

CRITERIA FOR THE FORMATION AND OPTIMIZATION OF THE ECOLOGICAL NETWORK BASED ON MSPA–MCR MODELS

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss6/a274

Keywords:

ecological network, MSPA, MCR, minimum cumulative resistance, landscape structure, ecological corridor, biodiversi-ty, sustainable development.

Abstract

This study scientifically substantiates the criteria for the formation and optimization of ecological networks based on MSPA and MCR models. The MSPA model, through morphological analysis of landscape structure, allows the identification of ecological cores, corridors, and isolated fragments, while the MCR model serves to assess ecological connectivity by considering various anthropogenic and natural resistance factors through the principle of minimum cumulative resistance. Furthermore, the possibilities of applying MSPA–MCR models to determine the optimal placement of ecological corridors and to ensure the integrity of natural landscapes have been analyzed. On this basis, opportunities for effective planning of ecological network elements, biodiversity conservation, and ensuring regional sustainable development have been considered.

Author Biographies

  • Abduganiev Olimjon Isomiddinovich, Fargʻona davlat universiteti

    Farg‘ona davlat universiteti Geografiya kafedrasi professori, DSc

  • Komilova Tursunoy Dilmurodjon qizi, Fargʻona davlat universiteti

    Farg‘ona davlat universiteti mustaqil izlanuvchisi

References

1. Abdugʻaniyev O.I. Muhofaza etiladigan tabiiy hududlar tizimini takomillashtirish va ulardan foydalanishning geoekologik asoslari (Farg’ona vodiysi misolida). Monografiya. Fargʻona, 2024-y. 296 b.

2. Бобылев С.Н., Горячева А.А. (2019) Идентификация и оценка экосистемных услуг: международный контекст // Вестник международных организаций. Т. 14. № 1. С. 225–236. DOI: 10.17323/1996-7845-2019-01-13

3. Климанова О.А., Колбовский Е.Ю., Илларионова О.А. Зеленая инфраструктура города: оценка состоя-ния и проектирование развития. – М.: Товарищество научных изданий КМК, 2020. — 324с.

4. Колбовский Е.Ю. Пространственный анализ в геоэкологии. М.: МГУ, 2022. 820 с.

5. Миронова Е.Е. ГИС-моделирование зеленой инфраструктуры средиземноморских городов для управления урбанизированными экосистемами (на примере города Малага). Экосистемы: экология и динамика, 2020, том 4, № 4, с. 14-36.

6. Петров Л.А., Колбовский Е.Ю. Современные методы пространственного анализа зеленой инфра-структуры урбанизированных территорий (на примере города Грозного) Грозненский естественнонаучный бюллетень, том 5, № 3 (21), 2020. С. 39-51. DOI: 10.25744/genb.2020.20.3.004

7. Унагаева Н., Злобин Д. (2023). Цифровой инструментарий формирования зеленой инфраструктуры городов. проект байкал, 20 (78), 66–71. https://doi.org/10.51461/issn.2309-3072/78.2236.

8. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity // Nature. – 2012. – Vol. 486, No. 7401. – P. 59–67. doi:10.1038/nature11148

9. Effects of urban agglomeration and expansion on landscape connectivity in the river valley region, Qinghai-Tibet Plateau Qingbo Wang, Shiliang Liu *, Yixuan Liu, Fangfang Wang, Hua Liu, Lu Yu.

10. Evans CC, Moorhead AR, Storey BE, Blagburn BL, Wolstenholme AJ,

Kaplan RM (2017) Evaluation of the larval migration inhibition assay for detecting macrocyclic lactone resistance in Dirofilaria immitis. Vet Parasitol 246:76.

11. Guo Ziyan., Zhu Chuxin., Fan Xiang., Li Muye., Xu Nuo., Yuan Yuan., Guan Yanjun., Lyu Chunjuan., Bai Zhongke (2025). Analysis of ecological network evolution in an ecological restoration area with the MSPA-MCR model: A case study from Ningwu County, China. Ecological Indicators, 170, 113067. https://doi.org/10.1016/j.ecolind.2024.113067

12. Hu C., Wang Z., Wang Y., Sun D., Zhang J. Combining MSPA-MCR Model to Evaluate the Ecological Net-work in Wuhan, China. Land 2022, 11, 213. https://doi.org/10.3390/land11020213

13. Huang X., Wang H., Shan L., Xiao F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecological Indicators. 2021, 132, 108319.

14. Jongman R.H.G., Kulvik M., Kristiansen I. European ecological networks and greenways // Landscape and Urban Planning. – 2011. – Vol. 100(4). – P. 434–438.

15. Junqueira VS, Cardoso FF, Oliveira MM, Sollero BP, Silva FF, Lopes PS

(2017). Use of molecular markers to improve relationship information in the genetic evaluation of beef cattle tick re-sistance under pedigree-based models. J Anim Breed Genet 134(1):14.

16. Kremen C, Merenlender AM. Landscapes that work for biodiversity and people. Science. 2018 Oct 19;362(6412):eaau6020. doi: 10.1126/science.aau6020. PMID: 30337381.

17. Lewis S.L. and Maslin M.A. (2015) Defining the Anthropocene. Nature 519: 171–180.

18. Liu J., Chen J., Yang Y., You H., Han X. Construction and optimization of an ecological network in the Yel-low River Source Region Based on MSPA and MCR Modelling. International journal of environmental research and public health. 2023, 20, 3724.

19. Malekpour S., et al., 2024. Transformative localization to accelerate the 2030 Agenda. Nat. Sustain. 7, 516–518.

20. McRae B.H., Dickson B.G., Keitt T.H., Shah V.B. Using circuit theory to model connectivity in ecology, evo-lution, and conservation. Ecology 89: 2712-2724 November 2008. DOI:10.1890/07-1861.1

21. Opdam P., Steingröver E., van Rooij S. Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes // Landscape and Urban Planning. – 2006. – Vol. 75(3–4). – P. 322–332.

22. Pascual-Hortal, L., Saura, S. Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. – Landscape Ecology, 2006. – P. 959–967. DOI: 10.1007/s10980-006-0013-z.

23. Ramírez-Delgado J.P., Di Marco M., Watson J.E.M. et al. Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nat Commun 13, 595 (2022). https://doi.org/10.1038/s41467-022-28270-3

24. Soille P., Vogt P. (2009). Morphological segmentation of binary patterns. Pattern Recognition Letters 30, 4:456-459, doi: 10.1016/j.patrec.2008.10.015.

25. Soille P., Vogt P. (2022). Morphological spatial pattern analysis: open source release. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy. pp. 427-433, doi: doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-427-2022.

26. Summerhayes C.P. et al. Summerhayes The future extent of the Anthropocene epoch: A synthesis. Global and Planetary Change 242 (2024) 104568 C.P. https://doi.org/10.1016/j.gloplacha.2024.104568

27. Sun Qiaoyun, Yu Jianqi, Zeng Yingran, Gai Yifang, Wang Jia, Zhang Yujun. Mapping Biodiversity Conser-vation Priorities for Protected Areas for Spatial Optimization: A Case Study in the Songnen Plain, China //Ecology and Evolution. – 2024. – Vol. 14. – e70516. – P. 1–13. DOI: https://doi.org/10.1002/ece3.70516.

28. Tang F., Zhou X., Wang L., Zhang Y., Fu M., Zhang P. Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal. Land 2021, 10, 919. https://doi.org/10.3390/land10090919.

29. Tang X., Mei J., Tang Y. Construction of Landscape Heritage Corridors in Ethnic Minority Villages Based on LCA-MSPA-MCR Framework: A Case Study of the Nanling Ethnic Corridor Region in China. Buildings 2025, 15, 3403. https://doi.org/ 10.3390/buildings15183403

30. Vogt, P., & Riitters, K. (2017). GuidosToolbox: universal digital image object analysis. European Journal of Remote Sensing, 50 (1), 352–361. https://doi.org/10.1080/22797254.2017.1330650.

31. Wade, Alisa A.; McKelvey, Kevin S.; Schwartz, Michael K. 2015. Resistance-surface-based wildlife conser-vation connectivity modeling: Summary of efforts in the United States and guide for practitioners. Gen. Tech. Rep. RMRS-GTR-333. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 93 p

32. Wang Q., Liu S., Liu Y., Wang F., Liu H., Yu L. (2022). Effects of urban agglomeration and expansion on landscape connectivity in the river valley region, Qinghai-Tibet Plateau. Global Ecology and Conservation, 36, e02004. https://doi.org/10.1016/j.gecco.2022.e02004.

33. Wang, Z.; Shi, Z.; Huo, J.; Zhu, W.; Yan, Y.; Ding, N. Construction and Optimization of an Ecological Net-work in Funiu Mountain Area Based on MSPA and MCR Models, China. Land 2023, 12, 1529. https://doi.org/10.3390/land12081529.

34. Watson J., Dudley N., Segan D., Hockings M. The performance and potential of protected areas. Nature 2014, 515, 67–73.

35. Yang S. Evaluation of urban ecological security model based on GIS sensing and MCR model. Measure-ment: Sensors. 2024, 33, 101206.

36. Ye H., Yang Z., Xu X., 2020. Ecological corridors analysis based on MSPA and MCR model–A case study of the Tomur World Natural Heritage Region. Sustainability 12 (3), 959.

37. Zeng Y., Koh L.P., Wilcove D.S. Gains in biodiversity conservation and ecosystem services from the ex-pansion of the planet’s protected areas. Sci. Adv. 2022, 8, eabl9885.

38. Zhang F., Jia Y., Liu X., Li T., Gao Q. Application of MSPA-MCR models to construct ecological security pat-tern in the basin: A case study of Dawen River basin. Ecological Indicators. 2024, 160, 111887

39. Zhang R., Niu S., Kutsch W.L., Yu G. Global Ecosystem Restoration and Carbon Neutrality Programme, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2440, https://doi.org/10.5194/egusphere-egu24-2440.

40. Zhang Shuhan., Jiang Hailing., Yu Hailin., Feng Xinhui., Fan Mingxuan. (2024). Construction of landscape ecological network based on MCR risk assessment model: A case study of Liaoning Province, China. Ecological Indi-cators, 166, 112549. https://doi.org/10.1016/j.ecolind.2024.112549

41. Zhu K., Chen Y., Zhang S., Yang Z., Huang L., Lei B., Li L., Zhou Z., Xiong H., Li X. Identification and Prevention of Agricultural Non-Point Source Pollution Risk Based on the Minimum Cumulative Resistance Model. Glob. Ecol. Conserv. 2020, 23, e01149.

Downloads

Published

2026-02-03

How to Cite

CRITERIA FOR THE FORMATION AND OPTIMIZATION OF THE ECOLOGICAL NETWORK BASED ON MSPA–MCR MODELS. (2026). Scientific Journal of the Fergana State University, 31(6), 274. https://doi.org/10.56292/SJFSU/vol31_iss6/a274