logo
O‘zbekcha

GEOECOLOGICAL FOUNDATIONS FOR IMPLEMENTING THE KUNMING–MONTREAL GLOBAL BIODIVERSITY FRAMEWORK (GBF) IN UZBEKISTAN

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss6/a261

Keywords:

Great Acceleration, anthropocene, noosphere, biological diversity, landscape diversity, protected natural areas, eco-logical networks, species protection index (SPI), Kunming-Montreal global framework, ecological sustainability, bio-sphere reserves, climate change.

Abstract

This article analyzes the geoecological foundations for implementing the Kunming-Montreal Global Biodiversity Framework in Uzbekistan in the context of "The Great Acceleration" – global anthropogenic changes that began in the second half of the 20th century. The article discusses the degradation of biological and landscape diversity, the need to expand the network of protected natural areas (PNAs), the concept of ecological networks, and their connectivity level. The current state of PNAs in Uzbekistan, particularly in the Fergana Valley, their territorial coverage, the Species Protection Index (SPI), and opportunities to achieve global goals (30% coverage by 2030) are examined based on scientific research and analyses. Based on the obtained results, recommendations are provided for increasing the area of PNAs, ensuring connectivity through ecological corridors, enhancing management efficiency, and improving national strategies. The article serves to adapt Uzbekistan's environmental policy to green development and global changes.

Author Biographies

  • Axmadaliyev Yusupjon Ismoilovich, Fargʻona davlat universiteti

    Farg‘ona davlat universiteti, Geografiya kafedrasi professori, G.f d.

  • Abduganiev Olimjon Isomiddinovich, Fargʻona davlat universiteti

    Farg‘ona davlat universiteti, Geografiya kafedrasi professori, DSc.

References

1. Akhmadaliev, Y., Abduganiev, O., Makhkamov, E., Kosimov, D., Komilova, N. (2025). Geoecological foun-dations strengthening the stability of the national system of protected areas of the Republic of Uzbekistan. E3S Web of Conferences, 633, 07003 e3s-conferences.orge3s-conferences.org.

2. Ahn, Y.-J., & Juraev, Z. (2023). Green Spaces in Uzbekistan: Historical Heritage and Challenges for Urban Environment. Nature-Based Solutions, 100077. https://doi.org/ 10.1016/j.nbsj.2023.100077

3. Biodiversity Finance Policy and Institutional Review in Uzbekistan. Perepada L. and Radjabov T. Tashkent – 2023, 54 pages.

4. CBD (2022a). Decision adopted by the conference of the parties to the convention on biological diversity 15/4. Kunming-montreal global biodiversity framework. https: www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf.

5. CBD (2022b). A New Global Framework for Managing Nature through 2030: 1st Detailed Draft Agreement Debuts. Press Release. 2021. Available online: https://archive.ph/mNVcd (accessed on 11 July 2022).

6. Dudley, N., Timmins, H. L., Stolton, S., & Watson, J. E. M. (2024). Effectively Incorporating Small Reserves into National Systems of Protected and Conserved Areas. Diversity, 16(4), 216. mdpi.com DOI: https://doi.org/10.3390/d16040216.

7. The Species Protection Report, 2025 / Half-Earth Project. — E.O. Wilson Biodiversity Foundation, 2025. – б3 pp.

8. Gatiso, T. T., Kulik, L., Bachmann, M., Bonn, A., Bösch, L., Freytag, A., Heurich, M., Wesche, K., Winter, M., Ordaz-Németh, I., Sop, T., & Kühl, H. S. (2022). Sustainable protected areas: Synergies between biodiversity conserva-tion and socioeconomic development. People and Nature, 4(4), 893–903. https://doi.org/10.1002/pan3.10326

9. Geldmann, J., Manica, A., Burgess, N. D., Coad, L., & Balmford, A. (2019). A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proceedings of the National Academy of Sciences, 116(46), 23209–23215. https://doi.org/10.1073/pnas.1908221116.

10. Grumbine, R. E., & Xu, J. (2021). Five steps to inject transformative change into the post-2020 global bio-diversity framework. BioScience, 71(7), 637–646. https://doi.org/ 10.1093/biosci/biab013.

11. Crist E, Kopnina H, Cafaro P, Gray J, Ripple WJ, Safina C, Davis J, DellaSala DA, Noss RF, Washington H, Rolston H III, Taylor B, Orlikowska EH, Heister A, Lynn WS and Piccolo JJ (2021) Protecting Half the Planet and Trans-forming Human Systems Are Complementary Goals.Front. Conserv. Sci. 2:761292. doi: 10.3389/fcosc.2021.761292

12. Hughes, A. C., & Grumbine, R. E. (2023). The Kunming-Montreal Global Biodiversity Framework: what it does and does not do, and how to improve it. Frontiers in Environmental Science, 11, 1281536. https://doi.org/10.3389/fenvs.2023.1281536.

13. Kunming-Montreal Global Biodiversity Framework adopted at COP15. XinhuaNet. 19 December 2022. Archived from the original on 19 December 2022. Retrieved 2023-03-29.

14. Laguna, E., Deltoro, V. I., Pérez-Botella, J., Pérez-Rovira, P., Serra, L. L., Olivares, A., & Fabregat, C. (2004). The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biological Conservation, 119(3), 421-426. https://doi.org/ 10.1016/j.biocon.2004.01.001.

15. Penagos Gaviria, M., Kaszta, Ż., & Farhadinia, M. S. (2022). Structural Connectivity of Asia’s Protected Areas Network: Identifying the Potential of Transboundary Conservation and Cost-Effective Zones. ISPRS International Journal of Geo-Information, 11(7), 408. DOI: https://doi.org/10.3390/ijgi11070408

16. Rammelt, C. F., Gupta, J., Liverman, D., Scholtens, J., Ciobanu, D., Abrams, J. F., Bai, X., Gifford, L., Gor-don, C., Hurlbert, M., Inoue, C. Y. A., Jacobson, L., Lade, S. J., Lenton, T. M., McKay, D. I. A., Nakicenovic, N., Okereke, C., Otto, I. M., Pereira, L. M., ... Zimm, C. (2023). Impacts of meeting minimum access on critical earth systems amidst the Great Inequality. Nature Sustainability, 6(2), 212–221. https://doi.org/10.1038/s41893-022-00995-5

17. Santangeli, A., Weigel, B., Antão, L. H., Kaarlejärvi, E., Hällfors, M., Lehikoinen, A., Lindén, A., Salemaa, M., Tonteri, T., Merilä, P., Vuorio, K., Ovaskainen, O., Vanhatalo, J., Roslin, T., & Saastamoinen, M. (2023). Mixed effects of a national protected area network on terrestrial and freshwater biodiversity. Nature Communications, 14(1), 5426. https://doi.org/ 10.1038/s41467-023-41073-4.

18. Shoshitaishvili, B. (2021). From Anthropocene to Noosphere: The Great Acceleration. Earth's Future, 9, e2020EF001917. https://doi.org/10.1029/2020EF001917

19. UNEP-WCMC (2018). 2018 United Nations List of Protected Areas. Supplement on protected area man-agement effectiveness. UNEP-WCMC: Cambridge, UK. –40 р.

20. WWF, (2022). Living planet report 2022 – building a nature-positive society. Gland, Switzerland: WWF.

21. IPBES Report, 2019. Transforming Changes Are Necessary to Restore and Protect Nature [2021-01-28]. https://www.ipbes.net.

22. IPCC, 2019. The IPCC and the Sixth Assessment Cycle [2021-01-28]. http://www.ipcc.ch.

23. Crisp, D., Dolman, H., Tanhua, T., McKinley, G.A., Hauck, J., Bastos, A., et al. (2022). How well do we un-derstand the land-ocean-atmosphere carbon cycle? Reviews of Geophysics, 60, e2021RG000736. https://doi.org/10.1029/2021RG000736

24. Stern, N. (2006) The Stern Review on the Economics of Climate Change. London: HM Stationery Offce.

25. Saura S., Bastin L., Battistella L., Mandrici A., Dubois G. Protected areas in the world’s ecoregions: How well connected are they? // Ecological Indicators. – 2017. – Vol. 76. – P. 144–158.

26. Bradshaw, C. J. A., Ehrlich, P. R., Beattie, A., Ceballos, G., Crist, E., Diamond, J., et al. (2021). Underesti-mating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 1: 615419. doi: 10.3389/fcosc.2020.615419.

27. Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L. N., et al. (2014). The biodiversi-ty of species and their rates of extinction, distribution, and protection. Science 344:1246752-1–10. doi: 10.1126/science.1246752.

28. Ripple, W., Wolf, C., Newsome, T., Barnard, P., Moomaw, W., and Grandcolas, P. (2020). World scientists’ warning of a climate emergency. Bioscience 70, 8–12. doi: 10.1093/biosci/biz088.

29. https://www.protectedplanet.net/en.

Downloads

Published

2026-02-03

How to Cite

GEOECOLOGICAL FOUNDATIONS FOR IMPLEMENTING THE KUNMING–MONTREAL GLOBAL BIODIVERSITY FRAMEWORK (GBF) IN UZBEKISTAN. (2026). Scientific Journal of the Fergana State University, 31(6), 261. https://doi.org/10.56292/SJFSU/vol31_iss6/a261