sg
O‘zbekcha

THE INFLUENCE OF NITROGEN ATOMS ON CARBON NANOTUBES AT DIFFERENT TEMPERATURES

Authors

  • Academy of Sciences of the Republic of Uzbekistan, Institute of Ion-Plasma and Laser Technologies,
  • Academy of Sciences of the Republic of Uzbekistan, Institute of Ion-Plasma and Laser Technologies,
  • Academy of Sciences of the Republic of Uzbekistan, Institute of Ion-Plasma and Laser Technologies,

Keywords:

double-walled carbon nanotubes, nitrogen adsorption, molecular dynamics simulation, chirality

Abstract

Nitrogen adsorbed carbon nanotubes attract a lot of attention in the field of materials science due to their unique
properties and application possibilities. Therefore, in this work, the influence of various temperatures (i.e. 300, 600 and
900 K) and pressures (1, 5 and 10 bar) on the adsorption of nitrogen atoms on double-layer carbon nanotubes (DSNTS)
was investigated. The studies were carried out by the method of molecular dynamics modeling (MD) using the potential
(ReaxFF). The results of the studies show that the influence of temperature and pressure on achieving good adsorption
of nitrogen atoms on the surface of the DSNT is great, and the best adsorption rate was at a temperature of 300 K and a
pressure of 10 bar, which was 79%. .
This study helps to understand the interaction of DSNTS with nitrogen atoms depending on external
parameters.

Author Biographies

  • , Academy of Sciences of the Republic of Uzbekistan, Institute of Ion-Plasma and Laser Technologies,

    O‘zbekiston Respublikasi Fanlar Akademiyasi, Ion-Plazma va Lazer Texnologiyalari Instituti,
    tayanch doktorant

  • , Academy of Sciences of the Republic of Uzbekistan, Institute of Ion-Plasma and Laser Technologies,

    O‘zbekiston Respublikasi Fanlar Akademiyasi, Ion-Plazma va Lazer Texnologiyalari Instituti, f-m.f.d,
    professor

  • , Academy of Sciences of the Republic of Uzbekistan, Institute of Ion-Plasma and Laser Technologies,

    O‘zbekiston Respublikasi Fanlar Akademiyasi, Ion-Plazma va Lazer Texnologiyalari Instituti,
    tayanch doktorant

References

S. Iijima, «Helical microtubules of graphitic carbon», Nature, t. 354, vol. 6348, pp. 56–58, 1991, doi:

1038/354056a0.

S. Iijima, «Carbon nanotubes: past, present, and future», Phys. B Condens. Matter, t. 323, vol. 1–4, pp. 1–5,

, doi: 10.1016/S0921-4526(02)00869-4.

D. Gupta, B. P. Choudhary, N. B. Singh, and N. S. Gajbhiye, «Carbon nanotubes: an overview», Emerg.

Mater. Res., т. 2, vol. 6, сс. 299–337, 2013, doi: 10.1680/emr.12.00043.

S. Frank, P. Poncharal, Z. L. Wang, and W. A. D. Heer, «Carbon Nanotube Quantum Resistors», Science, т.

, vol. 5370, pp. 1744–1746, 1998, doi: 10.1126/science.280.5370.1744.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, «Room-temperature transistor based on a single carbon

nanotube», Nature, т. 393, vol. 6680, сс. 49–52, 1998, doi: 10.1038/29954.

A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, «Ballistic carbon nanotube field-effect transistors»,

Nature, т. 424, vol. 6949, pp. 654–657, 2003, doi: 10.1038/nature01797.

Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, и D. Wu, «Adsorption of cadmium (II) from aqueous solution by

surface oxidized carbon nanotubes», Carbon, 41, vol. 5, pp. 1057–1062, 2003, doi: 10.1016/S0008-6223(02)00440-2.

G. Rao, C. Lu, и F. Su, «Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A

review», Sep. Purif. Technol., 58, vol. 1, pp. 224–231, 2007, doi: 10.1016/j.seppur.2006.12.006.

L. Ai and all., «Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon

nanotube: Kinetic, isotherm and mechanism analysis», J. Hazard. Mater., 198, pp. 282–290, 2011, doi:

1016/j.jhazmat.2011.10.041.

G. E. Froudakis, «Hydrogen storage in nanotubes & nanostructures», Mater. Today, т. 14, vol. 7–8, pp.

–328, 2011, doi: 10.1016/S1369-7021(11)70162-6.

B. O. Murjani, P. S. Kadu, M. Bansod, S. S. Vaidya and M. D. Yadav, «Carbon nanotubes in

biomedical applications: current status, promises, and challenges», Carbon Lett., 32, vol. 5, pp. 1207–1226, 2022, doi:

1007/s42823-022-00364-4.

T. Saliev, «The Advances in Biomedical Applications of Carbon Nanotubes», C, 5, vol. 2, p. 29, 2019,

doi: 10.3390/c5020029.

V. Negri, J. Pacheco-Torres, D. Calle, и P. López-Larrubia, «Carbon Nanotubes in Biomedicine», Top.

Curr. Chem., 378, vol. 1, p. 15, 2020, doi: 10.1007/s41061-019-0278-8.

S.-P. Ju and др., «A molecular dynamics study of the mechanical properties of a double-walled carbon

nanocoil», Comput. Mater. Sci., 82, pp. 92–99, 2014, doi: 10.1016/j.commatsci.2013.09.024.

V. Zólyomi and all., «Intershell interaction in double walled carbon nanotubes: Charge transfer and

orbital mixing», Phys. Rev. B, 77, vol. 24, p. 245403, 2008, doi: 10.1103/PhysRevB.77.245403.

M. Soto and all., «Effect of interwall interaction on the electronic structure of double-walled carbon

nanotubes», Nanotechnology, 26, vol. 16, p. 165201, 2015, doi: 10.1088/0957-4484/26/16/165201.

K. Fujisawa and all., «A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and

Applications», Appl. Sci., 6, vol. 4, p. 109, 2016, doi: 10.3390/app6040109.

T. Koretsune and S. Saito, «Electronic structures and three-dimensional effects of boron-doped carbon

nanotubes», Sci. Technol. Adv. Mater., 9, vol. 4, p. 044203, 2008, doi: 10.1088/1468-6996/9/4/044203.

K.-Y. Chun, H. S. Lee, and C. J. Lee, «Nitrogen doping effects on the structure behavior and the field

emission performance of double-walled carbon nanotubes», Carbon, 47, vol. 1, pp. 169–177, 2009, doi:

1016/j.carbon.2008.09.047.

Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, and S. Sun, «Nitrogen-Doped Carbon Nanotube and

Graphene Materials for Oxygen Reduction Reactions», Catalysts, 5, vol. 3, pp. 1574–1602, 2015, doi:

3390/catal5031574.

E. N. Nxumalo и N. J. Coville, «Nitrogen Doped Carbon Nanotubes from Organometallic Compounds:

A Review», Materials, 3, vol. 3, pp. 2141–2171, 2010, doi: 10.3390/ma3032141.

S. H. De Paoli Lacerda, J. Semberova, K. Holada, O. Simakova, S. D. Hudson, and J. Simak, «Carbon

Nanotubes Activate Store-Operated Calcium Entry in Human Blood Platelets», ACS Nano, 5, vol. 7, pp. 5808–5813,

, doi: 10.1021/nn2015369.

H. Wu, D. Wexler, and H. Liu, «Effects of different palladium content loading on the hydrogen storage

capacity of double-walled carbon nanotubes», Int. J. Hydrog. Energy, 7, vol. 7, pp. 5686–5690, 2012, doi:

1016/j.ijhydene.2011.12.120.

M. Zou, Y. Aono, S. Inoue, и Y. Matsumura, «Response of Palladium and Carbon Nanotube

Composite Films to Hydrogen Gas and Behavior of Conductive Carriers», Materials, 13, vol. 20, p. 4568, 2020, doi:

3390/ma13204568.

D. Xia and all., «Extracting the inner wall from nested double-walled carbon nanotube by platinum

nanowire: molecular dynamics simulations», RSC Adv., 7, vol. 63, pp. 39480–39489, 2017, doi: 10.1039/C7RA07066G

F. Shojaie, «$$hbox {N}{2}$$ N2 adsorption on the inside and outside the single-walled carbon

nanotubes by density functional theory study», Pramana, 90, vol.1, p.4, 2018, doi: 10.1007/s12043-017-1498-5.

M. Jamshidi, M. Razmara, B. Nikfar, and M. Amiri, «First principles study of a heavily nitrogen-doped

(10,0) carbon nanotube», Phys. E Low-Dimens. Syst. Nanostructures, 103, pp. 201–207, 2018, doi:

1016/j.physe.2018.06.003.

C. Zhao, Y. Lu, H. Liu, и L. Chen, «First-principles computational investigation of nitrogen-doped

carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries», RSC Adv., 9, vol. 30, pp. 17299–

, 2019, doi: 10.1039/C9RA03235E.

J. D. Correa, E. Florez, и M. E. Mora-Ramos, «Ab initio study of hydrogen chemisorption in nitrogendoped carbon nanotubes», Phys. Chem. Chem. Phys., т. 18, vol. 36, сс. 25663–25670, 2016, doi:

1039/C6CP04531F.

A. P. Thompson и др., «LAMMPS - a flexible simulation tool for particle-based materials modeling at

the atomic, meso, and continuum scales», Comput. Phys. Commun., 271, p. 108171, 2022, doi:

1016/j.cpc.2021.108171.

B. J. Alder and T. E. Wainwright, «Phase Transition for a Hard Sphere System», J. Chem. Phys., 27,

vol. 5, pp. 1208–1209, 1957, doi: 10.1063/1.1743957.

K. Chenoweth, A. C. T. Van Duin, and W. A. Goddard, «ReaxFF Reactive Force Field for Molecular

Dynamics Simulations of Hydrocarbon Oxidation», J. Phys. Chem. A, 112, vol. 5, pp. 1040–1053, 2008, doi:

1021/jp709896w.

G. Chenand all., «Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular

Capacitors», Phys. Rev. Lett., 90, vol. 25, p. 257403, 2003, doi: 10.1103/PhysRevLett.90.257403.

J. Kürti, V. Zólyomi, M. Kertesz, and S. Guangyu, «The geometry and the radial breathing mode of

carbon nanotubes: beyond the ideal behaviour», New J. Phys., 5, pp. 125–125, 2003, doi: 10.1088/1367-2630/5/1/125.

H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, «Molecular

dynamics with coupling to an external bath», J. Chem. Phys., 81, vol. 8, pp. 3684–3690, 1984, doi: 10.1063/1.448118.

J. Sun, P. Liu, M. Wang, и J. Liu, «Molecular Dynamics Simulations of Melting Iron Nanoparticles

with/without Defects Using a Reaxff Reactive Force Field», Sci. Rep., 10, vol. 1, p. 3408, 2020, doi: 10.1038/s41598-

-60416-5.

D. Ugarte, A. Châtelain, and W. A. De Heer, «Nanocapillarity and Chemistry in Carbon Nanotubes»,

Science, 274, vol. 5294, pp. 1897–1899, 1996, doi: 10.1126/science.274.5294.1897.

J. Tao and A. M. Rappe, «Physical Adsorption: Theory of van der Waals Interactions between Particles

and Clean Surfaces», Phys. Rev. Lett., 112, vol. 10, p. 106101, 2014, doi: 10.1103/PhysRevLett.112.106101.

F.F. Vol’kenshteyn, «Physical Chemistry of the Surface of Semiconductors». 1973 y.

T. Zecho, A. Güttler, X. Sha, D. Lemoine, B. Jackson, and J. Küppers, «Abstraction of D chemisorbed

on graphite (0001) with gaseous H atoms», Chem. Phys. Lett., 366, vol. 1–2, pp. 188–195, 2002, doi: 10.1016/S0009-

(02)01573-7.

Downloads

Published

2024-01-08