Skip to main navigation menu Skip to main content Skip to site footer

Physics and technology

No. 5 (2023): FarDU ilmiy xabarlari jurnali (Aniq va tabiiy fanlar)

THE INFLUENCE OF NITROGEN ATOMS ON CARBON NANOTUBES AT DIFFERENT TEMPERATURES

Submitted
January 6, 2024
Published
2024-01-08

Abstract

Nitrogen adsorbed carbon nanotubes attract a lot of attention in the field of materials science due to their unique
properties and application possibilities. Therefore, in this work, the influence of various temperatures (i.e. 300, 600 and
900 K) and pressures (1, 5 and 10 bar) on the adsorption of nitrogen atoms on double-layer carbon nanotubes (DSNTS)
was investigated. The studies were carried out by the method of molecular dynamics modeling (MD) using the potential
(ReaxFF). The results of the studies show that the influence of temperature and pressure on achieving good adsorption
of nitrogen atoms on the surface of the DSNT is great, and the best adsorption rate was at a temperature of 300 K and a
pressure of 10 bar, which was 79%. .
This study helps to understand the interaction of DSNTS with nitrogen atoms depending on external
parameters.

References

  1. S. Iijima, «Helical microtubules of graphitic carbon», Nature, t. 354, vol. 6348, pp. 56–58, 1991, doi:
  2. 1038/354056a0.
  3. S. Iijima, «Carbon nanotubes: past, present, and future», Phys. B Condens. Matter, t. 323, vol. 1–4, pp. 1–5,
  4. , doi: 10.1016/S0921-4526(02)00869-4.
  5. D. Gupta, B. P. Choudhary, N. B. Singh, and N. S. Gajbhiye, «Carbon nanotubes: an overview», Emerg.
  6. Mater. Res., т. 2, vol. 6, сс. 299–337, 2013, doi: 10.1680/emr.12.00043.
  7. S. Frank, P. Poncharal, Z. L. Wang, and W. A. D. Heer, «Carbon Nanotube Quantum Resistors», Science, т.
  8. , vol. 5370, pp. 1744–1746, 1998, doi: 10.1126/science.280.5370.1744.
  9. S. J. Tans, A. R. M. Verschueren, and C. Dekker, «Room-temperature transistor based on a single carbon
  10. nanotube», Nature, т. 393, vol. 6680, сс. 49–52, 1998, doi: 10.1038/29954.
  11. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, «Ballistic carbon nanotube field-effect transistors»,
  12. Nature, т. 424, vol. 6949, pp. 654–657, 2003, doi: 10.1038/nature01797.
  13. Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, и D. Wu, «Adsorption of cadmium (II) from aqueous solution by
  14. surface oxidized carbon nanotubes», Carbon, 41, vol. 5, pp. 1057–1062, 2003, doi: 10.1016/S0008-6223(02)00440-2.
  15. G. Rao, C. Lu, и F. Su, «Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A
  16. review», Sep. Purif. Technol., 58, vol. 1, pp. 224–231, 2007, doi: 10.1016/j.seppur.2006.12.006.
  17. L. Ai and all., «Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon
  18. nanotube: Kinetic, isotherm and mechanism analysis», J. Hazard. Mater., 198, pp. 282–290, 2011, doi:
  19. 1016/j.jhazmat.2011.10.041.
  20. G. E. Froudakis, «Hydrogen storage in nanotubes & nanostructures», Mater. Today, т. 14, vol. 7–8, pp.
  21. –328, 2011, doi: 10.1016/S1369-7021(11)70162-6.
  22. B. O. Murjani, P. S. Kadu, M. Bansod, S. S. Vaidya and M. D. Yadav, «Carbon nanotubes in
  23. biomedical applications: current status, promises, and challenges», Carbon Lett., 32, vol. 5, pp. 1207–1226, 2022, doi:
  24. 1007/s42823-022-00364-4.
  25. T. Saliev, «The Advances in Biomedical Applications of Carbon Nanotubes», C, 5, vol. 2, p. 29, 2019,
  26. doi: 10.3390/c5020029.
  27. V. Negri, J. Pacheco-Torres, D. Calle, и P. López-Larrubia, «Carbon Nanotubes in Biomedicine», Top.
  28. Curr. Chem., 378, vol. 1, p. 15, 2020, doi: 10.1007/s41061-019-0278-8.
  29. S.-P. Ju and др., «A molecular dynamics study of the mechanical properties of a double-walled carbon
  30. nanocoil», Comput. Mater. Sci., 82, pp. 92–99, 2014, doi: 10.1016/j.commatsci.2013.09.024.
  31. V. Zólyomi and all., «Intershell interaction in double walled carbon nanotubes: Charge transfer and
  32. orbital mixing», Phys. Rev. B, 77, vol. 24, p. 245403, 2008, doi: 10.1103/PhysRevB.77.245403.
  33. M. Soto and all., «Effect of interwall interaction on the electronic structure of double-walled carbon
  34. nanotubes», Nanotechnology, 26, vol. 16, p. 165201, 2015, doi: 10.1088/0957-4484/26/16/165201.
  35. K. Fujisawa and all., «A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and
  36. Applications», Appl. Sci., 6, vol. 4, p. 109, 2016, doi: 10.3390/app6040109.
  37. T. Koretsune and S. Saito, «Electronic structures and three-dimensional effects of boron-doped carbon
  38. nanotubes», Sci. Technol. Adv. Mater., 9, vol. 4, p. 044203, 2008, doi: 10.1088/1468-6996/9/4/044203.
  39. K.-Y. Chun, H. S. Lee, and C. J. Lee, «Nitrogen doping effects on the structure behavior and the field
  40. emission performance of double-walled carbon nanotubes», Carbon, 47, vol. 1, pp. 169–177, 2009, doi:
  41. 1016/j.carbon.2008.09.047.
  42. Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, and S. Sun, «Nitrogen-Doped Carbon Nanotube and
  43. Graphene Materials for Oxygen Reduction Reactions», Catalysts, 5, vol. 3, pp. 1574–1602, 2015, doi:
  44. 3390/catal5031574.
  45. E. N. Nxumalo и N. J. Coville, «Nitrogen Doped Carbon Nanotubes from Organometallic Compounds:
  46. A Review», Materials, 3, vol. 3, pp. 2141–2171, 2010, doi: 10.3390/ma3032141.
  47. S. H. De Paoli Lacerda, J. Semberova, K. Holada, O. Simakova, S. D. Hudson, and J. Simak, «Carbon
  48. Nanotubes Activate Store-Operated Calcium Entry in Human Blood Platelets», ACS Nano, 5, vol. 7, pp. 5808–5813,
  49. , doi: 10.1021/nn2015369.
  50. H. Wu, D. Wexler, and H. Liu, «Effects of different palladium content loading on the hydrogen storage
  51. capacity of double-walled carbon nanotubes», Int. J. Hydrog. Energy, 7, vol. 7, pp. 5686–5690, 2012, doi:
  52. 1016/j.ijhydene.2011.12.120.
  53. M. Zou, Y. Aono, S. Inoue, и Y. Matsumura, «Response of Palladium and Carbon Nanotube
  54. Composite Films to Hydrogen Gas and Behavior of Conductive Carriers», Materials, 13, vol. 20, p. 4568, 2020, doi:
  55. 3390/ma13204568.
  56. D. Xia and all., «Extracting the inner wall from nested double-walled carbon nanotube by platinum
  57. nanowire: molecular dynamics simulations», RSC Adv., 7, vol. 63, pp. 39480–39489, 2017, doi: 10.1039/C7RA07066G
  58. F. Shojaie, «$$hbox {N}{2}$$ N2 adsorption on the inside and outside the single-walled carbon
  59. nanotubes by density functional theory study», Pramana, 90, vol.1, p.4, 2018, doi: 10.1007/s12043-017-1498-5.
  60. M. Jamshidi, M. Razmara, B. Nikfar, and M. Amiri, «First principles study of a heavily nitrogen-doped
  61. (10,0) carbon nanotube», Phys. E Low-Dimens. Syst. Nanostructures, 103, pp. 201–207, 2018, doi:
  62. 1016/j.physe.2018.06.003.
  63. C. Zhao, Y. Lu, H. Liu, и L. Chen, «First-principles computational investigation of nitrogen-doped
  64. carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries», RSC Adv., 9, vol. 30, pp. 17299–
  65. , 2019, doi: 10.1039/C9RA03235E.
  66. J. D. Correa, E. Florez, и M. E. Mora-Ramos, «Ab initio study of hydrogen chemisorption in nitrogendoped carbon nanotubes», Phys. Chem. Chem. Phys., т. 18, vol. 36, сс. 25663–25670, 2016, doi:
  67. 1039/C6CP04531F.
  68. A. P. Thompson и др., «LAMMPS - a flexible simulation tool for particle-based materials modeling at
  69. the atomic, meso, and continuum scales», Comput. Phys. Commun., 271, p. 108171, 2022, doi:
  70. 1016/j.cpc.2021.108171.
  71. B. J. Alder and T. E. Wainwright, «Phase Transition for a Hard Sphere System», J. Chem. Phys., 27,
  72. vol. 5, pp. 1208–1209, 1957, doi: 10.1063/1.1743957.
  73. K. Chenoweth, A. C. T. Van Duin, and W. A. Goddard, «ReaxFF Reactive Force Field for Molecular
  74. Dynamics Simulations of Hydrocarbon Oxidation», J. Phys. Chem. A, 112, vol. 5, pp. 1040–1053, 2008, doi:
  75. 1021/jp709896w.
  76. G. Chenand all., «Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular
  77. Capacitors», Phys. Rev. Lett., 90, vol. 25, p. 257403, 2003, doi: 10.1103/PhysRevLett.90.257403.
  78. J. Kürti, V. Zólyomi, M. Kertesz, and S. Guangyu, «The geometry and the radial breathing mode of
  79. carbon nanotubes: beyond the ideal behaviour», New J. Phys., 5, pp. 125–125, 2003, doi: 10.1088/1367-2630/5/1/125.
  80. H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, «Molecular
  81. dynamics with coupling to an external bath», J. Chem. Phys., 81, vol. 8, pp. 3684–3690, 1984, doi: 10.1063/1.448118.
  82. J. Sun, P. Liu, M. Wang, и J. Liu, «Molecular Dynamics Simulations of Melting Iron Nanoparticles
  83. with/without Defects Using a Reaxff Reactive Force Field», Sci. Rep., 10, vol. 1, p. 3408, 2020, doi: 10.1038/s41598-
  84. -60416-5.
  85. D. Ugarte, A. Châtelain, and W. A. De Heer, «Nanocapillarity and Chemistry in Carbon Nanotubes»,
  86. Science, 274, vol. 5294, pp. 1897–1899, 1996, doi: 10.1126/science.274.5294.1897.
  87. J. Tao and A. M. Rappe, «Physical Adsorption: Theory of van der Waals Interactions between Particles
  88. and Clean Surfaces», Phys. Rev. Lett., 112, vol. 10, p. 106101, 2014, doi: 10.1103/PhysRevLett.112.106101.
  89. F.F. Vol’kenshteyn, «Physical Chemistry of the Surface of Semiconductors». 1973 y.
  90. T. Zecho, A. Güttler, X. Sha, D. Lemoine, B. Jackson, and J. Küppers, «Abstraction of D chemisorbed
  91. on graphite (0001) with gaseous H atoms», Chem. Phys. Lett., 366, vol. 1–2, pp. 188–195, 2002, doi: 10.1016/S0009-
  92. (02)01573-7.

Most read articles by the same author(s)