Skip to main navigation menu Skip to main content Skip to site footer

Physics and technology

No. 5 (2023): FarDU ilmiy xabarlari jurnali (Aniq va tabiiy fanlar)

ROLE OF GRAPHENE DEFECTS IN HYDROGEN ADSORPTION

Submitted
January 6, 2024
Published
2024-01-08

Abstract

Research on hydrogen storage using carbon-based nanomaterials is currently attracting increasing interest. Yet,
understanding the storage nature of graphene surfaces is still elusive.
In this study, we investigated the physisorption mechanisms of H2 molecules on defective graphenes using
reactive molecular dynamics simulations. We found that an increase in the size and concentration of defects in graphene
increases the physisorption of H2 molecules on the surface due to a change in the partial charges of atoms in the
system. Specifically, our results showed that in the case of the highest percentage of defects (10.27%), the gravimetric
density of H2 molecules is about 2.12 wt.% at ambient conditions, which is within the range of gravimetric densities
obtained from experiments and other simulations. The results also indicated that the physisorption of H2 molecules is
related to both the size and the concentration of defects on the graphene surface.

This study contributes to a better understanding of the mechanisms of hydrogen storage in graphene with
various defects at the atomic level.

References

  1. Y.-P. Chen, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production,
  2. Storage, and Utilization (Springer Berlin Heidelberg, New York, NY, (2017).
  3. P. P. Edwards, V. L. Kuznetsov, and W. I. F. David, Hydrogen Energy, Phil. Trans. R. Soc. A. 365, 1043 (2007).
  4. Adriana Rioja-Cabanillas, David Valdesueiro, Pilar Fernández-Ibáñez and John Anthony Byrne, Hydrogen from
  5. wastewater by photocatalytic and photoelectrochemical treatment, Journal of Physics: Energy, Vol 3, № 1, (2021)
  6. Akihiko Kudo and Yugo Miseki “Heterogeneous photocatalyst materials for water splitting” Chem. Soc. Rev., 2009,
  7. , 253–278
  8. Япония рассчитывает “озеленить” энергетику за счёт добычи гидрата метана //
  9. https://3dnews.ru/1035343/yaponiya-rasschitivaet-ozelenit-energetiku-za-schyot-dobichi-gidrata metana
  10. НОВАТЭК модернизирует турбины на ТЭС «Ямал СПГ»// https://www.kommersant.ru/doc/4606242 8. Зелёный
  11. водород из солнечной энергии без электролиза — совместный проект Repsol и Enagas // https://renen.ru/zelyonyjvodorod-iz-solnechnoj-energii-bez-elektroliza-sovmestnyj-proekt-repsol-i enagas/
  12. Австралия может стать мировым производителем “зеленого” водорода //
  13. https://teknoblog.ru/2021/07/23/112784
  14. Pavlos Nikolaidis, Andreas Poullikkas, “A comparative overview of hydrogen production processes”, Renewable
  15. and Sustainable Energy Reviews, Volume 67, January (2017), pp 597-611
  16. Nuria Sánchez-Bastardo, Robert Schlögl, and Holger Ruland “Methane Pyrolysis for Zero-Emission Hydrogen
  17. Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy” Ind. Eng.
  18. Chem. Res. 2021, 60, 32, 11855–11881
  19. Justyna Majewska, Beata Michalkiewicz, Production of hydrogen and carbon nanomaterials from methane using
  20. Co/ZSM-5 catalyst, International Journal of Hydrogen Energy, Vol 41, Iss 20, 1 June 2016, pp. 8668-8678
  21. Benjamin W Longmier, Alec D Gallimore and Noah Hershkowitz, Hydrogen production from methane using an RF
  22. plasma source in total nonambipolar flow, Plasma Sources Science and Technology, Vol 21, № 1, 2012
  23. В Таллинском порту появится водородный терминал // https://neftegaz.ru/news/Alternative energy/694170-vtallinskom-portu-poyavitsya-vodorodnyy-terminal.
  24. Водородное отопление // https://terman-s.ru/otoplen-3/otoplenie-doma-vodorodom-vodorod-dlya otopleniyazdanij-neobosnovannoe-reshenie.html
  25. Apple запатентовала мобильное устройство с питанием от водородного топливного элемента //
  26. https://php.ru/news/687814
  27. Tethered Chem Combos Could Revolutionize Artificial Photosynthesis //
  28. https://www.bnl.gov/newsroom/news.php?a=116868
  29. Исследователи повышают эффективность производства водорода из солнечного
  30. света//https://www.hydrogenfuelnews.com/researchers-improve-efficiency-of producing-hydrogen-from sunlight/8538857/
  31. Rahul Krishna, Elby Titus, Maryam Salimian, Olena Okhay, Sivakumar Rajendran, Ananth Rajkumar, J. M. G.
  32. Sousa, A. L. C. Ferreira, João Campos Gil and Jose Gracio, “Hydrogen Storage for Energy Application”, Hydrogen Storage
  33. Chapter 10, pp. 243-266. (2020)
  34. K. Xia, Q. Gao, J. Jiang, and H. Wang, An Unusual Method to Prepare a Highly Microporous Carbon for Hydrogen
  35. Storage Application, Materials Letters 100, 227 (2013).
  36. I. Jain, P. Jain, A. Jain, “Novel hydrogen storage materials: a review of lightweight complex hydrides” J. Alloys
  37. Compd. 503, 303–339 (2010).
  38. Ramin Moradi, Katrina M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and
  39. risk and reliability analysis, International Journal of Hydrogen Energy, Vol. 44, Iss. 23,3 May 2019, pp.12254-12269
  40. P. A. Owusu et al., A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation,
  41. Null 3, 1167990 (2016).
  42. G. M. Joselin Herbert et al., A Review of Wind Energy Technologies, Renewable and Sustainable Energy Reviews
  43. , 1117 (2007).
  44. Y. Song et al., Electronic Structure, Stability and Bonding of the Li-N-H Hydrogen Storage System, Phys. Rev. B
  45. , 195120 (2006).
  46. P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, “Interaction of hydrogen with metal nitrides and imides” Nature 420,
  47. –304 (2002).
  48. M. Rzepka, P. Lamp, M. De la Casa-Lillo, “Physisorption of hydrogen on microporous carbon and carbon
  49. nanonaychas”. J. Phys. Chem. B 102, 10894–10898 (1998).
  50. H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, Y. Murakami, “Hydrogen storage capacity of commercially
  51. available carbon materials at room temperature” Appl. Phys. Lett. 82, 1105–1107 (2003).
  52. M. Nijkamp, J. Raaymakers, A. Van Dillen, K. De Jong, “Hydrogen storage using physisorption–materials
  53. demands” Appl. Phys. A 72, 619–623 (2001).
  54. Man Mohan, Vinod Kumar Sharma, E. Anil Kumar, V. Gayathri, “Hydrogen storage in carbon materials - A review”
  55. Energy Storage.;p.p. 1-35 (2019)
  56. Krzysztof Jastrzębski and Piotr Kula, Emerging Technology for a Green, Sustainable Energy-Promising Materials
  57. for Hydrogen Storage, from Nanonaychas to Graphene—A Review, Materials 2021, 14(10), 2499.
  58. K. S. Novoselov,V.I.Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab K. Kim, “A roadmap for graphene”,
  59. Nature,2012,490,192-200.
  60. Gao Yang, Lihua Li, Wing Bun Lee & Man Cheung Ng, “Structure of graphene and its disorders: a review”, Science
  61. and Technology of Advanced Materials (2018)
  62. Andrea C. Ferrari. “Science and technology roadmap for graphene,related two-dimensional crystals, and hybrid
  63. systems”, Nanoscale 7, 4598-4810, (2015)
  64. Ziwei Xu,Tianying Yan,Guiwu Liu,Guanjun Qiao and Feng Ding, “Large scale atomistic simulation of single-layer
  65. graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon–metal potential”,
  66. Nanoscale, 8, 921-928, (2016)
  67. Fatemeh Bakhshi, Nafiseh Farhadian, “Improvement of hydrogen storage capacity on the palladium-decorated Ndoped graphene sheets as a novel adsorbent: A hybrid MD-GCMC simulation study”, International journal of hydrogen energy
  68. (2019)
  69. Igor A. Baburin, Alexey Klechikov, Guillaume Mercier,Alexandr Talyzin, Gotthard Seifert. “Hydrogen adsorption by
  70. perforated graphene” International journal of hydrogen energy 40, pp.6594 – 6599 (2015)
  71. Deepak Kag, Nitin Luhadiya, Nagesh D. Patil, S.I. Kundalwal, “Strain and defect engineering of graphene for
  72. hydrogen storage via atomistic modelling” International journal of hydrogen energy 46, 22599 – 22610, (2021)
  73. B. J. Alder and T. E. Wainwright, Phase Transition for a Hard Sphere System, J. Chem. Phys. 27, 1208 (1957).
  74. K. Chenoweth, A. C. T. van Duin, and W. A. Goddard, “ReaxFF Reactive Force Field for Molecular Dynamics
  75. Simulations of Hydrocarbon Oxidation”, J. Phys. Chem. A 112, 1040 (2008).
  76. J. Sun et al., Molecular Dynamics Simulations of Melting Iron Nanoparticles with/without Defects Using a Reaxff
  77. Reactive Force Field, Sci Rep 10, 1 (2020).
  78. H. Berendsen, J. P. M. Postma, W. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling
  79. to An External Bath”, The Journal of Chemical Physics 81, 3684 (1984).
  80. G. Bussi, D. Donadio, and M. Parrinello, “Canonical Sampling Through Velocity Rescaling”, The Journal of
  81. Chemical Physics 126, 014101 (2007).
  82. J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lo´pez and J. A. Alonso, “Interaction of molecular and atomic hydrogen
  83. with (5,5) and (6,6)single-wall carbon nanonaychas”, Journal of chemical physics 117, 5 (2002)
  84. Randviir E P, Brownson D A C, Banks C E A “Decade of graphene research: production, applications and outlook”.
  85. Mater Today 17, (2014) 426–432.
  86. Klechikov A, Mercier G, Yu J, Talyzin AV. Hydrogen storage in bulk graphene-related materials. Micropor Mesopor
  87. Mater 2015.
  88. Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G. Graphene nanostructures as tunable
  89. storage media for molecular hydrogen. Proc Natl Acad Sci U S A 2005;102:10439e44.
  90. Mc Allister M.J, Li J.L, Adamson D.H, Schniepp H.C, Abdala A.A, Liu J, et al. Single sheet functionalized graphene
  91. by oxidation and thermal expansion of graphite. Chem Mater 2007.
  92. D. Henwood and J. David Carey, “Ab initio investigation of molecular hydrogen physisorption on graphene and
  93. carbon nanonaychas”, Physical Review B 75, (2007), 245413.