СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ZnSb
Ключевые слова:
Омический контакт, термоэлектрик, интерметаллическое соединение, кристаллическая решетка, стержень, частица.Аннотация
В данной статье смесь полупроводниковых частиц ZnSb, измельченных до порошкообразного состояния, готовится с использованием 70% этилового спирта, и они помещаются на термостойкую подложку, например, керамическую трубку с внутренним диаметром 1 миллиметр, и сжимаются с двух сторон металлическими стержнями, действующими как омические контакты. Затем путем нагрева и соединения частиц при температурах, близких к температуре плавления соединения ZnSb, T=400-600 ℃, формируется поликристалл ZnSb в форме стержня диаметром 1 миллиметр. Полупроводник ZnSb в поликристаллической структуре имеет сопротивление R≤1 кОм, а в его межзеренных граничных областях образуются туннельные контакты и локальные энергетические уровни, где энергетические уровни обеспечивают резонансное туннелирование электронов.
Библиографические ссылки
A. A. Ivanov, D. I. Bogomolov, V. T. Bublik, M. V. Voronov, M. G. Lavrentev, V. P. Panchenko, Yu. N. Parkhomenko & N. Yu. Tabachkova. Effect of Synthesis Conditions on the Structure and Thermoelectric Properties of β-Zn4Sb3-Based Materials. Journal of Electronic Materials. Volume 49, pages 2704–2709 (2020). https://link.springer.com/article/10.1007/s11664-020-08056-3 (673 K da ~ 1,28 eng yuqori ZT olingan).
Zhuang-hao Zheng, Ping Fan, Jing-ting Luo & Guang-xing Liang. Enhanced Thermoelectric Properties of In-Doped ZnSb Thin Film with Surface Nanocrystallization. Journal of Electronic Materials. Volume 46, pages 1319–1323 (2017). https://link.springer.com/article/10.1007/s11664-016-5123-z (In legirlanganda Seebek koeffitsienti ortgan, issiqlik o'tkazuvchanligi keskin kamaydi, natijada ZT qiymati qo'shilmagan ZnSb yupqa plyonkaga qaraganda deyarli olti baravar yuqori).
Takao Morimura, Masayuki Hasaka & Hiromichi Nakashima. Microstructures and Thermoelectric Properties of Melt-Spun Zn x Sb3 Ribbons. Journal of Electronic Materials. Volume 42, pages 951–1955 (2013) https://link.springer.com/article/10.1007/s11664-013-2481-7 (elektr o'tkazuvchanligi yoki Seebek koeffitsienti ortadi)
X. Song, K. Valset, J.S. Graff, A. Thøgersen, A.E. Gunnæs, S. Luxsacumar, O.M. Løvvik, G.J. Snyder & T.G. Finstad. Nanostructuring of Undoped ZnSb by Cryo-Milling. Journal of Electronic Materials. Volume 44, pages 2578–2584 (2015). https://link.springer.com/article/10.1007/s11664-015-3708-6 (Issiqlayin presslashda materialning donadorligi ortishi kuzatilgan).
Zhuang-hao Zheng, Dong Yang, Xiao-lan Huang, Fu Li, Yue-Xing Chen, Guang-xing Liang, Jing-ting Luo & Ping Fan. High-performance zinc antimonide thermoelectric thin films achieved by a layer-by-layer combination reaction approach. Journal of Materials Science: Materials in Electronics. Volume 31, pages 16968–16974 (2020). https://link.springer.com/article/10.1007/s10854-020-04253-2
Jianping Lin, Lingzhi Ma, Zhonghua Zheng, Yilong Chen, Zhichao Cui, Jiping Wang & Guanjun Qiao. Thermoelectric Properties of Zn4Sb3 Composites with Incomplete Reaction. Journal of Electronic Materials. Volume 48, pages 159–1163 (2019). https://link.springer.com/article/10.1007/s11664-018-06851-7
N Karthikeyan, B Kavin Kumar, G Sathish Kumar & R Akilan. Intriguing metal–semiconductor transport properties on Se-substituted β-Zn4Sb3 compounds. Bulletin of Materials Science. Volume 46, Article number: 37 (2023). https://link.springer.com/article/10.1007/s12034-022-02866-3
Hong-xia Liu, Shu-ping Deng, Lan-xian Shen, Jin-song Wang, Feng Cheng & Shu-kang Deng. Electrical Transport Properties of Single Crystalline β-Zn4Sb3 Prepared by α-Sn Flux Method. Journal of Electronic Materials. Volume 46, pages 2867–2872 (2017). https://link.springer.com/article/10.1007/s11664-016-5014-3
Kinga Niedziółka & Philippe Jund. Influence of the Exchange–Correlation Functional on the Electronic Properties of ZnSb as a Promising Thermoelectric Material. Journal of Electronic Materials. Volume 44, pages 1540–1546 (2015). https://link.springer.com/article/10.1007/s11664-014-3459-9
CN CN102534303B. ZnSb thermoelectric material. 刘桂莲 宁波高智创新科技开发有限公司. Priority 2012-01-19 • Filed 2012-01-19 Granted 2013-10-30 • Published 2013-10-30. https://patents.google.com/patent/CN102534303B/zh
CN CN102560193B. Preparation method for n type Zn-Sb base thermoelectricity material. 刘桂莲 宁波市瑞通新材料科技有限公司. Priority 2012-01-19 • Filed 2012-01-19 • Granted 2013-09-11 • Published 2013-09-11. https://patents.google.com/patent/CN102560193B/zh
CN CN101857929A. Zinc antimony based porous p-type thermoelectric material and preparation. 赵文俞 武汉理工大学. Priority 2010-04-06 • Filed 2010-04-06 • Published 2010-10-13. https://patents.google.com/patent/CN101857929A/en
CN CN101857928A. P-type Zn4Sb3 based thermoelectric material and preparation method thereof. 赵文俞 武汉理工大学. Priority 2010-04-06 Filed 2010-04-06 Published 2010-10-13. https://patents.google.com/patent/CN101857928A/en
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Научный вестник Ферганский государственный университета

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.