logo
O‘zbekcha

ANALYSIS OF FOREIGN INNOVATIVE DEVELOPMENTS IN THE ASSESSMENT AND MITIGATION OF DEBRIS-FLOW AND FLOOD RISKS

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol32_iss1/a285

Keywords:

debris flow, flood, risk assessment, debris-flow protection, innovations, flexible barriers, monitoring, numerical model-ing, systems approach, risk management.

Abstract

The article analyzes foreign innovations in protection against debris flows and floods based on key scientific and patent sources from 2010-2024. A shift from traditional infrastructure to integrated systems is identified, which include monitoring, risk-informed design, and flexible modular barriers. Key trends include systemic risk management, data-centricity, probabilistic design, and technological advancement. The necessity of a comprehensive, science-based approach to risk reduction is substantiated.

Author Biography

  • Махкамов Бехзоджон Ровшан угли, ГУП "UzYolLoyiha LQI", соискатель

    ГУП "UzYolLoyiha LQI", соискатель

References

1. Дергачёва И. В., Салимова Б. Д. Исследование селевой активности в горных и предгорных районах Республики Узбекистан //Проблемы современной науки и образования. – 2022. – №. 9 (178). – С. 48-52.

2. Igigabel M., Diab Y., Yates M. Exploring Methodological Approaches for Strengthening the Resilience of Coastal Flood Protection System // Frontiers in Earth Science. 2022. – Т. 9. – С. 756936.

3. Genovese E. et al. The benefits of flood mitigation strategies: effectiveness of integrated protection measures //AIMS Geosciences. – 2020. – Т. 6. – №. 4. – С. 459-472.

4. Wendeler, C. Debris-Flow Protection Systems for Mountain Torrents: Basic Principles for Planning and Calculation of Flexible Barriers. Birmensdorf: WSL (WSL Berichte; 44), 2016. 279 с.

5. Armanini, A. Stream debris restraining structure: патент США US10767330B2. Заявл. 25.07.2018; опубл. 08.09.2020.

6. Kruczkiewicz A. et al. Development of a flash flood confidence index from disaster reports and geophysi-cal susceptibility //Remote Sensing. – 2021. – Т. 13. – №. 14. – С. 2764.

7. Wang, H.; Zhou, C.; Lin, G.; Guo, W. A debris flow monitoring system, method, electronic device and stor-age medium: патент Китая CN114114327B. Заявл. 06.12.2021; опубл. 14.10.2022.

8. Schenato, L.; Tecca, P. R.; Deganutti, A. M.; et al. Distributed acoustic sensing of debris flows in a physical model //Optical Fiber Sensors. – Optica Publishing Group, 2020. – С. Th4. 27.

9. Баринов А. Ю. Защита от селевых потоков «гибкими» барьерами: опыт Сочи //ГеоРиск. – 2013. – №. 4. – С. 56-58.

10. Marchelli M., Deangeli C. A time-independent reliability based design approach for debris flow flexible barriers //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 415. – С. 07010.

11. Xie X. et al. Regulation effect of slit-check dam against woody debris flow: Laboratory test //Frontiers in Earth Science. – 2023. – Т. 10. – С. 1023652.

12. Chen S. C., Tfwala S. Evaluating an optimum slit check dam design by using a 2D unsteady numerical model //E3S Web of Conferences. – EDP Sciences, 2018. – Т. 40. – С. 03027.

13. Xiao, S.; Qi, Y. Debris flow multi-level dissipative retaining structure: пат. заявка КНР CN 110004882 A; заявл. 19.04.2019; опубл. 12.07.2019.

14. Taylor, J. Water containment barriers, systems, and methods of using the same: патент США № US 9,004,815 B2. Заявл. 12.11.2012; опубл. 14.04.2015.

Downloads

Published

2026-02-03

How to Cite

ANALYSIS OF FOREIGN INNOVATIVE DEVELOPMENTS IN THE ASSESSMENT AND MITIGATION OF DEBRIS-FLOW AND FLOOD RISKS. (2026). Scientific Journal of the Fergana State University, 31(6), 285. https://doi.org/10.56292/SJFSU/vol32_iss1/a285