ANALYSIS OF FOREIGN INNOVATIVE DEVELOPMENTS IN THE ASSESSMENT AND MITIGATION OF DEBRIS-FLOW AND FLOOD RISKS
DOI:
https://doi.org/10.56292/SJFSU/vol32_iss1/a285Keywords:
debris flow, flood, risk assessment, debris-flow protection, innovations, flexible barriers, monitoring, numerical model-ing, systems approach, risk management.Abstract
The article analyzes foreign innovations in protection against debris flows and floods based on key scientific and patent sources from 2010-2024. A shift from traditional infrastructure to integrated systems is identified, which include monitoring, risk-informed design, and flexible modular barriers. Key trends include systemic risk management, data-centricity, probabilistic design, and technological advancement. The necessity of a comprehensive, science-based approach to risk reduction is substantiated.
References
1. Дергачёва И. В., Салимова Б. Д. Исследование селевой активности в горных и предгорных районах Республики Узбекистан //Проблемы современной науки и образования. – 2022. – №. 9 (178). – С. 48-52.
2. Igigabel M., Diab Y., Yates M. Exploring Methodological Approaches for Strengthening the Resilience of Coastal Flood Protection System // Frontiers in Earth Science. 2022. – Т. 9. – С. 756936.
3. Genovese E. et al. The benefits of flood mitigation strategies: effectiveness of integrated protection measures //AIMS Geosciences. – 2020. – Т. 6. – №. 4. – С. 459-472.
4. Wendeler, C. Debris-Flow Protection Systems for Mountain Torrents: Basic Principles for Planning and Calculation of Flexible Barriers. Birmensdorf: WSL (WSL Berichte; 44), 2016. 279 с.
5. Armanini, A. Stream debris restraining structure: патент США US10767330B2. Заявл. 25.07.2018; опубл. 08.09.2020.
6. Kruczkiewicz A. et al. Development of a flash flood confidence index from disaster reports and geophysi-cal susceptibility //Remote Sensing. – 2021. – Т. 13. – №. 14. – С. 2764.
7. Wang, H.; Zhou, C.; Lin, G.; Guo, W. A debris flow monitoring system, method, electronic device and stor-age medium: патент Китая CN114114327B. Заявл. 06.12.2021; опубл. 14.10.2022.
8. Schenato, L.; Tecca, P. R.; Deganutti, A. M.; et al. Distributed acoustic sensing of debris flows in a physical model //Optical Fiber Sensors. – Optica Publishing Group, 2020. – С. Th4. 27.
9. Баринов А. Ю. Защита от селевых потоков «гибкими» барьерами: опыт Сочи //ГеоРиск. – 2013. – №. 4. – С. 56-58.
10. Marchelli M., Deangeli C. A time-independent reliability based design approach for debris flow flexible barriers //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 415. – С. 07010.
11. Xie X. et al. Regulation effect of slit-check dam against woody debris flow: Laboratory test //Frontiers in Earth Science. – 2023. – Т. 10. – С. 1023652.
12. Chen S. C., Tfwala S. Evaluating an optimum slit check dam design by using a 2D unsteady numerical model //E3S Web of Conferences. – EDP Sciences, 2018. – Т. 40. – С. 03027.
13. Xiao, S.; Qi, Y. Debris flow multi-level dissipative retaining structure: пат. заявка КНР CN 110004882 A; заявл. 19.04.2019; опубл. 12.07.2019.
14. Taylor, J. Water containment barriers, systems, and methods of using the same: патент США № US 9,004,815 B2. Заявл. 12.11.2012; опубл. 14.04.2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific journal of the Fergana State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.