logo
O‘zbekcha

EFFECT OF SILICON PREPARATIONS ON THE GERMINATION AND BIOCHEMI-CAL ACTIVITY OF BUKHARA-8 COTTON SEEDLINGS UNDER CLIMATE CHANGE AND SOIL SALINITY CONDITIONS

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss5/a142

Keywords:

Soil, silicon-based preparations, germination rate, antioxidant enzymes, proline.

Abstract

Seed germination under saline and arid conditions is often limited due to stress factors, which highlights the need for effective approaches to enhance plant resilience. This study aimed to evaluate the effects of silicon-based and biologically active preparations Aminosid-Silicon, Aminosid-Aton, and Bionitrogen applied to cotton (Gossypium hirsutum L., cv. Bukhara-8). Germination dynamics were monitored from 10 to 22 days after sowing, and significant improvements were recorded in the treatment groups. Among them, Aminosid-Silicon showed the highest germination rate (79.3%), compared to 65.3% in the untreated control. Biochemical analysis revealed that silicon treatments stimulated the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as enhanced proline accumulation in seedlings. These results confirm that silicon-based preparations can compensate for native silicon deficiency in soils and play a key role in improving seed germination and enhancing physiological defense mechanisms under saline and arid stress conditions. Specifically, Aminosid-Silicon treatment increased superoxide dismutase activity from 143.12 to 158.69 U/mg protein, catalase from 81.78 to 103.21 U/mg protein, peroxidase from 134.96 to 152.01 U/mg protein, and proline content from 112.3 to 144.7 μg/g fresh weight, indicating a significant enhancement in physiological defense mechanisms under stress conditions.

Author Biographies

  • Усманов Тургун Тилакович, Бухарский государственный университет 

    к.с.-х.н., старший преподаватель кафедры Агрономии и почвоведения факультета Естественных наук и агробиотехнологии, Бухарский государственный университет   

  • Халилова Нигора Ихтиёровна, Бухарский государственный педагогический институт

    Бухарский государственный педагогический институт Кафедра биологии, преподаватель

  • Ибрагимов Акмал Ахмадович, Национальный университет Узбекистана

    Национальный университет Узбекистана, химический факультет, кафедра природных соединений и прикладной химии, магистрант,

  • Мамасолиева Малика Адхамовна, Национальный университет Узбекистана

    Национальный университет Узбекистана, кафедра почвоведения, (PhD)

References

1. Aebi, H. (1984). [13] Catalase in vitro. In Methods in Enzymology (Vol. 105, pp. 121–126). Elsevier. https://doi.org/10.1016/S0076-6879(84)05016-3

2. Alhousari, F., & Greger, M. (2018). Silicon and Mechanisms of Plant Resistance to Insect Pests. Plants, 7(2), 33. https://doi.org/10.3390/plants7020033

3. Alsudays, I. M., Alshammary, F. H., Alabdallah. et al (2024). Applications of humic and fulvic acid under sa-line soil conditions to improve growth and yield in barley. BMC Plant Biology, 24(1), 191. https://doi.org/10.1186/s12870-024-04863-6

4. Bocharnikova, E. A., Loginov, S. V., Matychenkov, V. V., & Storozhenko, P. A. (2010). Silicon fertilizer effi-ciency. Russian Agricultural Sciences, 36(6), 446–448. https://doi.org/10.3103/S1068367410060157

5. Bocharnikova, Е. А., Matichenkov, V. V., & Matichenkov, I. V. (2023). Silicon-Based Materials in Agriculture. Агрохимия, 12, 106–113. https://doi.org/10.31857/S0002188123120049

6. Chance, B., & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. In Methods in Enzymology (Vol. 2, pp. 764–775). Elsevier. https://doi.org/10.1016/S0076-6879(55)02300-8

7. Deng, Q., Yu, T., Zeng, Z. et al (2021). Silicon Application Modulates the Growth, Rhizosphere Soil Charac-teristics, and Bacterial Community Structure in Sugarcane. Frontiers in Plant Science, 12, 710139. https://doi.org/10.3389/fpls.2021.710139

8. Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sci-ences, 91(1), 11–17. https://doi.org/10.1073/pnas.91.1.11

9. Etesami, H., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881–896. https://doi.org/10.1016/j.ecoenv.2017.09.063

10. Exley, C. (2015). A possible mechanism of biological silicification in plants. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00853

11. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiology, 59(2), 309–314. https://doi.org/10.1104/pp.59.2.309

12. Hayat, K., Khan, J., Khan, A., Ullah, S., Ali, S., Salahuddin, & Fu, Y. (2021). Ameliorative Effects of Exoge-nous Proline on Photosynthetic Attributes, Nutrients Uptake, and Oxidative Stresses under Cadmium in Pigeon Pea (Cajanus cajan L.). Plants, 10(4), 796. https://doi.org/10.3390/plants10040796

13. Hussein Jabal, A., & Abdulkaree, M. A. (2023). Soil salinity and nutrient availability influenced by silicon application to tomato irrigation with different saline water. Bionatura, 8(CSS 1), 1–12. https://doi.org/10.21931/RB/CSS/S2023.08.01.30

14. Janes-Bassett, V., Blackwell, M. S. A., Blair, G., Davies, J., Haygarth, P. M., Mezeli, M. M., & Stewart, G. (2022). A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Bi-ology and Biochemistry, 165, 108537. https://doi.org/10.1016/j.soilbio.2021.108537

15. Leroy, N., De Tombeur, F., Walgraffe, Y., Cornélis, J.-T., & Verheggen, F. J. (2019). Silicon and Plant Natu-ral Defenses against Insect Pests: Impact on Plant Volatile Organic Compounds and Cascade Effects on Multitrophic Interactions. Plants, 8(11), 444. https://doi.org/10.3390/plants8110444

16. López-Pérez, M. C., Pérez-Labrada, F., Ramírez-Pérez, L. J. (2018). Dynamic Modeling of Silicon Bioa-vailability, Uptake, Transport, and Accumulation: Applicability in Improving the Nutritional Quality of Tomato. Frontiers in Plant Science, 9, 647. https://doi.org/10.3389/fpls.2018.00647

17. Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and Salinity Stress Responses and Microbe-Induced Tol-erance in Plants. Frontiers in Plant Science, 11, 591911. https://doi.org/10.3389/fpls.2020.591911

18. Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. (2018). P5CS expression level and pro-line accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the pres-ence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13(1), 461–471. https://doi.org/10.1080/17429145.2018.1506516

19. Mamasolieva M., Holmurodov N., Gafurova L. A. (2023). Effect of silicon fertilizers on plant growth and de-velopment in saline soils. National University of Uzbekistan.

20. Matichenkov, V. V., & Bocharnikova, E. A. (2001). Chapter 13 The relationship between silicon and soil physical and chemical properties. In Studies in Plant Science (Vol. 8, pp. 209–219). Elsevier. https://doi.org/10.1016/S0928-3420(01)80017-3

21. Matichenkov, V. V., Bocharnikova, E. A., Kosobryukhov, A. A., & Biel, K. Ya. (2008). Mobile forms of silicon in plants. Doklady Biological Sciences, 418(1), 39–40. https://doi.org/10.1134/S0012496608010134

22. Meng, X., Jin, N., Jin, L., Wang, S., Zhao, W., Xie, Y., Huang, S. (2024). Silicon-seed priming promotes seed germination under CA-induced autotoxicity by improving sucrose and respiratory metabolism in cucumber (Cu-cumis sativus L.). BMC Plant Biology, 24(1), 1164. https://doi.org/10.1186/s12870-024-05908-6

23. Muslim, D. A., Al-Shareefi, M. J. H., & Alazawi, S. S. M. (2023). Effect of Salicylic Acid and Nano-Silicon of the Enzymatic Activity for Potato Shoots Grown Under Salt Stress in Vitro. IOP Conference Series: Earth and Environ-mental Science, 1158(10), 102006. https://doi.org/10.1088/1755-1315/1158/10/102006

24. Muthuselvan, K., Chinnapaiyan, V., Renganathan, U. (2025). Nano Silicon as a Potential Seed Priming Agent for Enhancing Resilience against Moisture Stress in Finger Millet (Eleusine coracana L.). Silicon. https://doi.org/10.1007/s12633-025-03268-w

25. Ogawa, K., Kanematsu, S., & Asada, K. (1997). Generation of Superoxide Anion and Localization of Cu Zn-Superoxide Dismutase in the Vascular Tissue of Spinach Hypocotyls: Their Association with Lignification. Plant and Cell Physiology, 38(10), 1118–1126. https://doi.org/10.1093/oxfordjournals.pcp.a029096

26. Pachepsky, Y., Yakirevich, A., Ponizovsky, A. A., & Gummatov, N. (2024). The osmotic potential of soil so-lutions in salt tolerance studies: Following M. Th. van Genuchten’s innovation. Vadose Zone Journal, 23(4), e20299. https://doi.org/10.1002/vzj2.20299

27. Paul, E. A. (2007). Soil microbiology, ecology, and biochemistry in perspective. In Soil Microbiology, Ecol-ogy and Biochemistry (pp. 3–24). Elsevier. https://doi.org/10.1016/B978-0-08-047514-1.50005-6

28. Pawar, G., Sargar, P., Naik, G., Deshmukh, S., Shedge, P., Halge, S., Pawar, A., & Reddy, P. N. (2023). Ef-fect of Abiotic Stress on Plant Growth and Development, Physiological and Breeding Strategies to Overcome Stress Condition. International journal of plant and environment, 8(03), 1–9. https://doi.org/10.18811/ijpen.v8i03.01

29. Pérez‐Arellano, I., Carmona‐Álvarez, F., Martínez, A. I., Rodríguez‐Díaz, J., & Cervera, J. (2010). Pyrroline‐5‐carboxylate synthase and proline biosynthesis: From osmotolerance to rare metabolic disease. Protein Science, 19(3), 372–382. https://doi.org/10.1002/pro.340

30. Richard Drees, L., Wilding, L. P., Smeck, N. E., & Senkayi, A. L. (2018). Silica in Soils: Quartz and Disor-dered Silica Polymorphs. In J. B. Dixon & S. B. Weed (Eds.), SSSA Book Series (pp. 913–974). Soil Science Society of America. https://doi.org/10.2136/sssabookser1.2ed.c19

31. Tarolli, P., Luo, J., Park, E., Barcaccia, G., & Masin, R. (2024). Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience, 27(2), 108830. https://doi.org/10.1016/j.isci.2024.108830

32. Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A Review of Silicon in Soils and Plants and Its Role in US Agriculture: History and Future Perspectives. Soil Science, 181(9/10), 393–411. https://doi.org/10.1097/SS.0000000000000179

33. Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q., & Guo, S. (2017). Role of Silicon on Plant–Pathogen Inter-actions. Frontiers in Plant Science, 8, 701. https://doi.org/10.3389/fpls.2017.00701

34. Wilson, M. J. (2020). Dissolution and formation of quartz in soil environments: A review. Soil Science An-nual, 71(2), 3–14. https://doi.org/10.37501/soilsa/122398

Downloads

Published

2026-01-27

How to Cite

EFFECT OF SILICON PREPARATIONS ON THE GERMINATION AND BIOCHEMI-CAL ACTIVITY OF BUKHARA-8 COTTON SEEDLINGS UNDER CLIMATE CHANGE AND SOIL SALINITY CONDITIONS. (2026). Scientific Journal of the Fergana State University, 31(5), 142. https://doi.org/10.56292/SJFSU/vol31_iss5/a142