IQLIM O‘ZGARISHI SHAROITIDA MIKROORGANIZMLARNING AGROEKOLOGIK BARQARORLIKNI TA’MINLASHDAGI ROLI
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss4/a160Keywords:
Mikrobiologik preparat, mikroorganizm, PGPR, mikoriza, zamburug‘, agroekologik barqarorlik, bioo‘g‘it, fitogormon, biotik stress, abiotik stress, biofortifikatsiya, siderofor, biologik nazorat.Abstract
Mazkur maqolada iqlim o‘zgarishi sharoitida o‘simliklarning o‘sishi va rivojlanishiga ta’sir ko‘rsatuvchi mikrobiologik preparatlarning ahamiyati ilmiy manbalar asosida tahlil qilingan. Foydali mikroorganizmlar, xususan rizobakteriyalar va mikorizal zamburug‘lar o‘simliklar bilan bevosita va bilvosita aloqaga kirishib, o‘simliklarning oziqlanishini yaxshilaydi, o‘sish gormonlari va sideroforlar sintezini kuchaytiradi, abiotik va biotik stress omillariga bardoshliligini oshiradi. Shuningdek, ushbu ishda o‘sishni rag‘batlantiruvchi mikroorganizmlarning fitogormonlar biosintezi, fosfor va temir kabi elementlarni eruvchan holga aylantirishdagi roli, o‘simlik patogenlariga qarshi bionazorat mexanizmlari, shuningdek mikrob bioo‘g‘itlar asosida biofortifikatsiya strategiyalari chuqur yoritilgan.
References
1. Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140.
2. Camaille, M.; Fabre, N.; Clément, C.; Ait Barka, E. Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021, 9, 687.
3. Emmanuel, O.C.; Babalola, O.O. Productivity and quality of horticultural crops through coinoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res.
4. Enebe, M.C.; Babalola, O.O. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Appl. Microbiol. Biotechnol.
5. Forni, C.; Duca, D.; Glick, B.R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria.
6. Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst. 2021, 4, 39.
7. Khan, N.; Bano, A.; Shahid, M.A.; Nasim, W.; Babar, M.A. Interaction between PGPR and PGR for water conserva-tion and plant growth attributes under drought condition. Biologia 2018, 73, 1083–1098.
8. Kumari, B.; Mallick, M.A.; Solanki, M.K.; Solanki, A.C.; Hora, A. Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture. In Plant Health Under Biotic Stress; Springer: Singapore, 2019; pp. 109–127.
9. Poveda, J.; Gonzalez-Andres, F. Bacillus as a source of phytohormones for use in agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 8629–8645.
10. Prasad, M.; Srinivasan, R.; Chaudhary, M.; Choudhary, M.; Jat, L.K. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Perspectives and challenges. In PGPR Amelioration in Sustainable Agriculture; Woodhead Publishing: Sawston, UK, 2019; pp. 129–157.
11. Song, Q.; Song, X.S.; Deng, X.; Luo, J.Y.; Song, R.Q. Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scand. J. Res. 2021, 36, 249–262.
12. Prisa, D. Biochar effects in the growing and control of biotic and abiotic stress in Astrophytum myriostigma and Astrophytum capricorne. GSC Biol. Pharm. Sci. 2021, 16, 186–194.
13. Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 783–802.
14. Wang, H.; Liu, R.J.; You, M.P.; Barbetti, M.J.; Chen, Y.L. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms 2021, 9, 1988.
15. Abdelaal, K.; Alkahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 2021, 10, 520.
16. Dar, S.A.; Bhat, R.A.; Dervash, M.A.; Dar, Z.A. Azotobacter as biofertiliser for sustainable soil and plant health under saline environmental conditions. In Microbiota and Biofertilisers; Springer: Berlin/Heidelberg, Germany, 2021; Volume 4, pp. 231–254.
17. Martınez-Morales, L.; Soto-Urzua, L.; Baca, B.; Sanchez-Ahedo, J. Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol. Lett. 2003, 228, 167–173.
18. Somers, E.; Ptacek, D.; Gysegom, P.; Srinivasan, M.; Vanderleyden, J. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl. Environ. Microbiol. 2005, 71, 1803–1810.
19. Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.L. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers. Conserv. 2019, 28, 2405–2429.
20. Fadiji, A.E.; Babalola, O.O.; Santoyo, G.; Perazzolli, M. The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Front. Microbiol. 2022, 12, 829099.
21. Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019, 138, 10–18.
22. Vorholt, J.A.; Vogel, C.; Carlström, C.I.; Müller, D.B. Establishing causality: Opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 2017, 22, 142–155.
23. Kaminsky, L.M.; Trexler, R.V.; Malik, R.J.; Hockett, K.L.; Bell, T.H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 2019, 37, 140–151.
24. Naylor, D.; Degraaf, S.; Purdom, E.; Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017, 11, 2691–2704.
25. Akhtar, N.; Ilyas, N.; Hayat, R.; Yasmin, H.; Noureldeen, A.; Ahmad, P. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nanoparticles for amelioration of drought stress in wheat. Plant Physiol. Biochem. 2021, 166, 160–176.
26. Djuuna, I.A.F.; Prabawardani, S.; Massora, M. Population Distribution of Phosphate-solubilizing Microorganisms in Agricultural Soil. Microbes Environ. 2022, 37, ME21041.
27. Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68.
28. Saif, S.; Khan, M.S.; Zaidi, A.; Ahmad, E. Role of Phosphate-Solubilizing Actinomycetes in Plant Growth Promotion: Current Perspective. In Phosphate Solubilizing Microorganisms; Khan, M., Zaidi, A., Musarrat, J., Eds.; Springer: Cham, Switzerland, 2014; pp. 137–156.
29. Zuo, Y.; Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil. 2011, 339, 83–95.
30. Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; et al. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017, 8, 1–25.
31. Pii, Y.; Penn, A.; Terzano, R.; Crecchio, C.; Mimmo, T.; Cesco, S. Plant microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol. Biochem. 2015, 87, 45–52.
32. Bhat, M.A.; Kumar, V.; Bhat, M.A.; Wani, I.A.; Dar, F.L.; Farooq, I.; Bhatti, F.; Koser, R.; Rahman, S.; Jan, A.T. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front. Microbiol. 2020, 11, 1952.
33. İpek, M.; Aras, S.; Arıkan, Ş.; Eşitken, A.; Pırlak, L.; Donmez, M.F.; Turan, M. Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Sci. Hortic. 2017, 219, 144–151.
34. Saleem, M.; Law, A.D.; Sahib, M.R.; Pervaiz, Z.H.; Zhang, Q. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 2018, 6, 47–51.
35. Narayanasamy, S.; Thangappan, S.; Uthandi, S. Plant growth-promoting Bacillus sp. cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system. Microbiol. Res. 2020, 239, 126518.
36. Vandana, U.K.; Rajkumari, J.; Singha, L.P.; Satish, L.; Alavilli, H.; Sudheer, P.D.; Chauhan, S.; Ratnala, R.; Satturu, V.; Mazumder, P.B. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 2021, 10, 101.
37. Khan, M.A.; Asaf, S.; Khan, A.L.; Ullah, I.; Ali, S.; Kang, S.-M.; Lee, I.-J. Alleviation of salt stress response in soy-bean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann. Microbiol. 2019, 69, 797–800.
38. Gadhave, K.R.; Devlin, P.F.; Ebertz, A.; Ross, A.; Gange, A.C. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb. Ecol. 2018, 76, 741–750.
39. Lally, R.D.; Galbally, P.; Moreira, A.S.; Spink, J.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 2017, 8, 2193.
40. Homma, Y.; Sato, Z.; Hirayama, F.; Konno, K.; Shirahama, H.; Suzui, T. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil. Biol. Biochem. 1989, 21, 723–728.
41. Jenifer, M.R.A.; Reena, A.; Aysha, O.S.; Valli, S.; Nirmala, P.; Vinothkumar, P. Isolation of siderophore producing bacteria from rhizosphere soil and their antagonistic activity against selected fungal plant pathogens. Int. J. Curr. Microbiol. Appl. 2013, 2, 59–65.
42. Larkin, R.P.; Tavantzis, S. Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am. J. Potato Res. 2013, 90, 157–167.
43. Pal, K.K.; Gardener, M. Biological Control of Plant Pathogens. The Plant Health Instructor; APSnet: Paul, MN, USA, 2006; pp. 1–25.
44. Goettel, M.S.; Koike, M.; Kim, J.J.; Aiuchi, D.; Shinya, R.; Brodeur, J. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J. Invertebr. Pathol. 2008, 98, 256–261.
45. Singh, A.; Shukla, N.; Kabadwal, B.C.; Tewari, A.K.; Kumar, J. Review on plant Trichoderma pathogen interaction. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2382–2397.
46. Egel, D.S.; Hoagland, L.; Davis, J.; Marchino, C.; Bloomquistc, M. Efficacy of organic disease control products on common foliar diseases of tomato in field and greenhouse trials. Crop Prot. 2019, 122, 90–97.
47. Arora, N.K.; Khare, E.; Maheshwari, D.K. Plant Growth Promoting Rhizobacteria: Constraints in Bioformulation, Commercialization, and Future Strategies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 97–116.
48. Herrmann, L.; Lesueur, D. Challenges of formulation and quality of biofertilisers for successful inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873.
49. Lucy, M.; Reed, E.; Glick, B.R. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 2004, 86, 1–25.
50. Głodowska, M.; Schwinghamer, T.; Husk, B.; Smith, D. Biochar based inoculants improve soybean growth and nodulation. Agric. Sci. 2017, 8, 1048–1064.
51. del Carmen Orozco-Mosqueda, M.; Fadiji, A.E.; Babalola, O.O.; Glick, B.R.; Santoyo, G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol. Res. 2022, 16, 127137.
52. Hussein, A.N.; Abbasi, S.; Sharifi, R.; Jamali, S. The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. J. Crop Prot. 2018, 7, 73–85.
53. Jambhulkar, P.P.; Sharma, P.; Manokaran, R.; Lakshman, D.K.; Rokadia, P.; Jambhulkar, N. Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. Eur. J. Plant Pathol. 2018, 152, 747–757.
54. Varo, A.; Raya-Ortega, M.C.; Trapero, A. Selection and evaluation of micro-organisms for biocontrol of Verticillum dahlie in olive. J. Appl. Microbiol. 2016, 121, 766–767.
55. Mia, M.B.; Shamsuddin, Z. Nitrogen fixation and transportation by rhizobacteria: A scenario of rice and banana. Int. J. Bot. 2010, 6, 235-242.
56. Tabassum, B.; Khan, A.; Tariq, M.; Ramzan, M.; Khan, M.S.I.; Shahid, N.; Aaliya, K. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 2017, 121, 102-117.
57. Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297.
58. Miljakovic, D.; Marinkovic, J.; Balesevic-Tubic, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037.
59. Naik, K.; Mishra, S.; Srichandan, H.; Singh, P.K.; Sarangi, P.K. Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatal. Agric. Biotechnol. 2019, 21, 101326.
60. Ghosh, S.K.; Bera, T.; Chakrabarty, A.M. Microbial siderophore a boon to agricultural sciences. Biol. Control 2020, 144, 104214.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific journal of the Fergana State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Most read articles by the same author(s)
- , , , , , BIOGEOCHEMISTRY OF ELEMENTS IN SIEROZEMS AND NATURAL MEDICINAL PLANTS , Scientific journal of the Fergana State University: No. 3 (2024): FarDU.Ilmiy xabarlar jurnali (Aniq va tabiiy fanlar)
- Botirova Durdigul Rustam qizi, Obidov Muzaffarjon Valijonovich, Egamberdiyeva Dilfuza Rustamovna, EVALUATING SUBSTRATE TYPES FOR ENHANCED HYDROPONIC STRAWBERRY YIELD AND QUALITY , Scientific journal of the Fergana State University: No. 2 (2025): FarDU ilmiy xabarlari jurnali (Tabiiy fanlar)
- , , , TECHNOLOGY FOR PREPARING A NUTRIENT MEDIUM FOR MICROALGAE (EXAMPLE OF ANKISTRODESMUS) , Scientific journal of the Fergana State University: No. 2 (2025): FarDU ilmiy xabarlari jurnali (Tabiiy fanlar)
- Omonjon o‘g‘li1, Valijonovich, FOYDALI MIKROORGANIZMLARNING O‘SIMLIK BIOMASSASIGA TA’SIRINI BAHOLASH , Scientific journal of the Fergana State University: No. 4 (2025): FarDU ilmiy xabarlari jurnali (Tabiiy fanlar)