SODIUM–SULFUR AND SODIUM–SELENIUM BATTERIES OPERATING AT ROOM TEMPERATURE
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss3/a%25pKeywords:
natriy–oltingugurt batareyasi, natriy–selen batareyasi, karbonat asosidagi elektrolit, efir asosidagi elektrolit, elektrolit modifikatsiyasi, energiya saqlashAbstract
Sodium-based secondary batteries, especially sodium–sulfur (Na–S) and sodium–selenium (Na–Se) systems, are attracting attention as future energy storage technologies due to their low cost and stability. This article reviews recent literature results on the chemical composition of carbonate and ether-based electrolytes for Na–S and Na–Se batteries, their modification strategies, and electrochemical performance. Approaches to electrolyte additives, ionic transport mechanisms, and electrode–electrolyte interphase stability are compared, and promising electrolyte design directions for these systems are discussed.
References
Goikolea, E., Palomares, V., Wang, S.J., et al.: Na-ion batteries: approaching old and new challenges. Adv. Energy Mater. 10, 2002055 (2020). https://doi.org/10.1002/aenm.202002055
Wang, Y.Z., Zhou, D., Palomares, V., et al.: Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13, 3848–3879 (2020). https://doi. org/10.1039/d0ee02203a
Rai, A., Esplin, R., Nunn, O., et al.: The times they are a changin’: current and future trends in electricity demand and supply. Electr. J. 32, 24–32 (2019). https://doi.org/10.1016/j.tej. 2019.05.017
Lachuriya, A., Kulkarni, R.: Stationary electrical energy storage technology for global energy sustainability: a review. In: 2017 international conference on nascent technologies in engineering (ICNTE), Vashi, India (2017)
Papaefthymiou, G., Dragoon, K.: Towards 100% renewable energy systems: uncapping power system flexibility. Energy Policy 92, 69–82 (2016). https://doi.org/10.1016/j.enpol.2016. 01.025
Hameer, S., van Niekerk, J.L.: A review of large-scale electrical energy storage. Int. J. Energy Res. 39, 1179–1195 (2015). https:// doi.org/10.1002/er.3294
Kousksou, T., Bruel, P., Jamil, A., et al.: Energy storage: applications and challenges. Sol. Energy Mater. Sol. Cells 120, 59–80 (2014). https://doi.org/10.1016/j.solmat.2013.08.015
Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochem. Energy Rev. 5, 112–144 (2022). https://doi.org/10.1007/s41918-021-00110-w
Wang, H., Matios, E., Luo, J.M., et al.: Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem. Soc. Rev. 49, 3783–3805 (2020). https://doi.org/10.1039/d0cs00033g
Wang, Y.X., Zhang, B.W., Lai, W.H., et al.: Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829
Jaumaux, P., Wu, J.R., Shanmukaraj, D., et al.: Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644 (2021). https://doi.org/10.1002/adfm.202008644
Liang, Y.L., Dong, H., Aurbach, D., et al.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0
Sun, B., Xiong, P., Maitra, U., et al.: Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 32, 1903891 (2020). https://doi.org/10.1002/adma. 201903891
Perveen, T., Siddiq, M., Shahzad, N., et al.: Prospects in anode materials for sodium ion batteries: a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser. 2019.109549
Kumar, D., Kuhar, S.B., Kanchan, D.K.: Room temperature sodium–sulfur batteries as emerging energy source. J. Energy Storage 18, 133–148 (2018). https://doi.org/10.1016/j.est.2018. 04.021
Hueso, K.B., Armand, M., Rojo, T.: High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734 (2013). https://doi.org/10.1039/c3ee24086j
Duan, J., Tang, X., Dai, H.F., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4
US Geological Survey. Mineral Commodity Summaries 2022. Reston, VA (2022). https://doi.org/10.3133/mineral2022
Hans Wedepohl, K.: The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995). https://doi. org/10.1016/0016-7037(95)00038-2
Haynes, W.M., Lide, D.R., Bruno, T.J.: CRC handbook of chemistry and physics. CRC Press, Boca Raton (2016). https://doi.org/ 10.1201/9781315380476
Ma, D.T., Li, Y.L., Yang, J.B., et al.: New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferro-electric-encapsulated cathode: toward ultrastable free-standing room temperature sodium–sulfur batteries. Adv. Funct. Mater. 28, 1705537 (2018). https://doi.org/10.1002/adfm.201705537
Shiraz, M.H.A., Zhao, P., Liu, J.: High-performance sodium–selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. J. Power Sources 453, 227855 (2020). https://doi.org/10.1016/j. jpowsour.2020.227855
Wang, Y.X., Wang, Y.X., Wang, Y.X., et al.: Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 5, 2547–2570 (2019). https://doi.org/10.1016/j. chempr.2019.05.026
Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https:// doi.org/10.1039/c6cs00776g
Kumar, D., Rajouria, S.K., Kuhar, S.B., et al.: Progress and prospects of sodium–sulfur batteries: a review. Solid State Ion. 312, 8–16 (2017). https://doi.org/10.1016/j.ssi.2017.10.004
Manthiram, A., Yu, X.W.: Ambient temperature sodium–sulfur batteries. Small 11, 2108–2114 (2015). https://doi.org/10.1002/ smll.201403257
Wen, Z.Y., Hu, Y.Y., Wu, X.W., et al.: Main challenges for high performance NAS battery: materials and interfaces. Adv. Funct. Mater. 23, 1005–1018 (2013). https://doi.org/10.1002/adfm. 201200473
Zhang, F., Xiong, P., Guo, X., et al.: A nitrogen, sulphur dualdoped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium–selenium batteries. Energy Storage Mater. 19, 251–260 (2019). https://doi. org/10.1016/j.ensm.2019.03.019
Li, Q.Q., Liu, H.G., Yao, Z.P., et al.: Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10, 8788–8795 (2016). https://doi.org/10.1021/acsna no.6b04519
Huang, X.L., Zhou, C.F., He, W.D., et al.: An emerging energy storage system: advanced Na–Se batteries. ACS Nano 15, 5876– 5903 (2021). https://doi.org/10.1021/acsnano.0c10078
Parant, J.P., Olazcuaga, R., Devalette, M., et al.: Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J. Solid State Chem. 3, 1–11 (1971). https://doi.org/10.1016/0022-4596(71) 90001-6
Nagelberg, A.S., Worrell, W.L.: A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 29, 345–354 (1979). https://doi.org/10.1016/0022-4596(79)90191-9
Braconnier, J.J., Delmas, C., Fouassier, C., et al.: Comporte- ment electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980). https://doi.org/10.1016/0025-5408(80) 90199-3
Yoshino, A.: The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012). https://doi.org/10.1002/anie. 201105006
Zubi, G., Dufo-López, R., Carvalho, M., et al.: The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser. 2018.03.002
Yang, C.P., Xin, S., Yin, Y.X., et al.: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem. Int. Ed. 52, 8363–8367 (2013). https://doi.org/10.1002/ anie.201303147
Kummer, J. T., Neill, W.: Google Patents (1968)
Xin, S., Yin, Y.X., Guo, Y.G., et al.: A high-energy room-temperature sodium–sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126
NGK Insulators (2021) About NGK history. https://www.ngk- insulators.com/en/info/history/. Accessed 23 Feb 2023
NGK Insulators (2009) The vendors’ perspective on barriers & issues encountered in U.S. deployment. https://efiling.energy.ca. gov/GetDocument.aspx?tn=50786&DocumentContentId=9147. Accessed 23 Feb 2023
Abraham, K., Rauh, R., Brummer, S.: A low temperature Na–S battery incorporating a soluble S cathode. Electrochim. Acta 23, 501–507 (1978). https://doi.org/10.1016/0013-4686(78)85027-0
Sciamanna, S.F., Lynn, S.: Sulfur solubility in pure and mixed organic solvents. Ind. Eng. Chem. Res. 27, 485–491 (1988). https://doi.org/10.1021/ie00075a019
Lu, X.C., Kirby, B.W., Xu, W., et al.: Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299–306 (2013). https://doi.org/10.1039/c2ee23606k
Xu, X.F., Zhou, D., Qin, X.Y., et al.: A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10. 1038/s41467-018-06443-3
Yang, C.P., Yin, Y.X., Guo, Y.G.: Elemental selenium for electro-chemical energy storage. J. Phys. Chem. Lett. 6, 256–266 (2015). https://doi.org/10.1021/jz502405h
Ding, J., Zhou, H., Zhang, H.L., et al.: Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ. Sci. 10, 153–165 (2017). https://doi.org/10.1039/c6ee02274j
Chawla, N., Safa, M.E.: Sodium batteries: a review on sodium– sulfur and sodium–air batteries. Electronics 8, 1201 (2019). https://doi.org/10.3390/electronics8101201
Wang, N.N., Wang, Y.X., Bai, Z.C., et al.: High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 13, 562–570 (2020). https://doi.org/10.1039/c9ee03251g
Lee, B., Paek, E., Mitlin, D., et al.: Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
Wang, C.L., Wang, H., Hu, X.F., et al.: Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium–sulfur batteries. Adv. Energy Mater. 9, 1803251 (2019). https://doi.org/10.1002/aenm.201803251
Ponrouch, A., Monti, D., Boschin, A., et al.: Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015). https://doi.org/10.1039/c4ta04428b
Cresce, A.V., Russell, S.M., Borodin, O., et al.: Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19, 574–586 (2017). https://doi.org/10.1039/ c6cp07215a
Abraham, K.M.: How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5, 3544–3547 (2020). https://doi.org/10.1021/acsenergylett.0c02181
Eshetu, G.G., Elia, G.A., Armand, M., et al.: Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv. Energy Mater. 10, 2000093 (2020). https://doi.org/10.1002/aenm.202000093
Ponrouch, A., Marchante, E., Courty, M., et al.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572 (2012). https://doi.org/10.1039/c2ee22258b
Zhao, X.M., Yan, Y.W., Ren, X.X., et al.: Trimethyl phosphate for nonflammable carbonate-based electrolytes for safer room-temperature sodium–sulfur batteries. ChemElectroChem 6, 1229–1234 (2019). https://doi.org/10.1002/celc.201801833
Wu, J.X., Liu, J.P., Lu, Z.H., et al.: Non-flammable electrolyte for dendrite-free sodium–sulfur battery. Energy Storage Mater. 23, 8–16 (2019). https://doi.org/10.1016/j.ensm.2019.05.045
di Lecce, D., Minnetti, L., Polidoro, D., et al.: Triglyme-based electrolyte for sodium-ion and sodium–sulfur batteries. Ionics 25, 3129–3141 (2019). https://doi.org/10.1007/s11581-019-02878-w
Eng, A.Y.S., Kumar, V., Zhang, Y.W., et al.: Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv. Energy Mater. 11, 2003493 (2021). https://doi.org/ 10.1002/aenm.202003493
Zhang, J., Wang, D.W., Lv, W., et al.: Ethers illume sodiumbased battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8, 1801361 (2018). https://doi.org/10.1002/ aenm.201801361
Li, P.R., Ma, L., Wu, T.P., et al.: Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li–S and Na–S batteries. Adv. Energy Mater. 8, 1800624 (2018). https://doi.org/10.1002/aenm.201800624
Zhang, H., Diemant, T., Qin, B.S., et al.: Solvent-dictated sodium sulfur redox reactions: investigation of carbonate and ether elec-trolytes. Energies 13, 836 (2020). https://doi.org/10.3390/en130 40836
Ryu, H., Kim, T., Kim, K., et al.: Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J. Power Sources 196, 5186–5190 (2011). https://doi.org/10.1016/j.jpowsour.2011.01. 109
Liu, H.W., Lai, W.H., Yang, Q.R., et al.: Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries. Nano Micro Lett. 13, 1–14 (2021). https://doi. org/10.1007/s40820-021-00648-w
Kohl, M., Borrmann, F., Althues, H., et al.: Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium–sulfur full cell batteries. Adv. Energy Mater. 6, 1502185 (2016). https://doi.org/10.1002/aenm.201502185
Lin, Z., Liu, Z.C., Fu, W.J., et al.: Phosphorous pentasulfide as a novel additive for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 23, 1064–1069 (2013). https://doi.org/10. 1002/adfm.201200696
Yu, X.W., Manthiram, A.: Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118, 22952–22959 (2014). https://doi.org/10.1021/ jp507655u
Zhou, D., Tang, X., Guo, X., et al.: Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59, 16725–16734 (2020). https://doi.org/10.1002/anie.20200 7008
Medenbach, L., Hartmann, P., Janek, J., et al.: A sodium polysulfide battery with liquid/solid electrolyte: improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol. 8, 1901200 (2020). https://doi. org/10.1002/ente.201901200
Yu, X.W., Manthiram, A.: Ambient-temperature sodium–sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5, 1500350 (2015). https://doi.org/10.1002/aenm.20150 0350
Kumar, A., Ghosh, A., Roy, A., et al.: High-energy density room temperature sodium–sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays. Energy Storage Mater. 20, 196– 202 (2019). https://doi.org/10.1016/j.ensm.2018.11.031
Kumar, A., Ghosh, A., Forsyth, M., et al.: Free-radical catalysis and enhancement of the redox kinetics for room-temperature sodium–sulfur batteries. ACS Energy Lett. 5, 2112–2121 (2020). https://doi.org/10.1021/acsenergylett.0c00913
Reddy, B., Premasudha, M., Oh, K.M., et al.: Hydrothermal synthesis of MoS2/rGO composite as sulfur hosts for room temperature sodium–sulfur batteries and its electrochemical properties. J. Energy Storage 39, 102660 (2021). https://doi. org/10.1016/j.est.2021.102660
Basile, A., Hilder, M., Makhlooghiazad, F., et al.: Sodium energy storage: ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies (adv. energy mater. 17/2018). Adv. Energy Mater. 8, 1870078 (2018). https://doi.org/10.1002/ aenm.201870078
Stettner, T., Balducci, A.: Protic ionic liquids in energy storage devices: past, present and future perspective. Energy Storage Mater. 40, 402–414 (2021). https://doi.org/10.1016/j.ensm.2021. 04.036
Yang, Q.W., Zhang, Z.Q., Sun, X.G., et al.: Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47, 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h
Nozawa, R., Harimoto, R., Tsuchiya, M., et al.: Sodium-sulfur batteries with room-temperature ionic liquid electrolytes. Elec- trochem Soc Meeting Abstr 222. 2, 22 (2012)
Wei, S.Y., Xu, S.M., Agrawral, A., et al.: A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016). https://doi.org/10.1038/ncomms11722
Wang, D., Hwang, J., Chen, C.Y., et al.: A β-alumina/inor- ganic ionic liquid dual electrolyte for intermediate-temperature sodium–sulfur batteries. Adv. Funct. Mater. 31, 2105524 (2021). https://doi.org/10.1002/adfm.202105524
Ruiz-Martínez, D., Gómez, R.: The liquid ammoniate of sodium iodide as an alternative electrolyte for sodium ion batteries: the case of titanium dioxide nanotube electrodes. Energy Storage Mater. 22, 424–432 (2019). https://doi.org/10.1016/j.ensm.2019. 07.036
Ruiz-Martínez, D., Kovacs, A., Gómez, R.: Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 10, 1936–1941 (2017). https://doi.org/10.1039/c7ee01735a
Jeong, G., Kim, H., Sug Lee, H., et al.: A room-temperature sodium rechargeable battery using an SO2– based nonflammable inorganic liquid catholyte. Sci. Rep. 5, 12827 (2015). https://doi. org/10.1038/srep12827
Huang Z. et al. High-energy room-temperature sodium–sulfur and sodium–selenium batteries for sustainable energy storage //Electrochemical Energy Reviews. – 2023. – Т. 6. – №. 1. – С. 21.
Published
Issue
Section
License
Copyright (c) 2025 Scientific journal of the Fergana State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Most read articles by the same author(s)
- , FORMATION PRESS IN TURKISTAN AND THE JOURNALISTIC ACTIVITY OF SADRIDDIN AYNI , Scientific journal of the Fergana State University: No. 5 (2023): Scientific journal of the Fergana State University (Social humanities sciences)
- , PROBLEMS OF MODERN COMPUTER ETHICS , Scientific journal of the Fergana State University: No. 3 (2023): FarDU ilmiy xabarlari jurnali (Aniq va tabiiy fanlar)
- , MAIN ASPECTS OF RESEARCHING NEEDS AND INTERESTS IN THE INFORMATION SOCIETY , Scientific journal of the Fergana State University: No. 5 (2023): Scientific journal of the Fergana State University (Social humanities sciences)
- Farrux Temirov, ISSUES OF TURKESTAN HISTORY IN THE WORKS OF SADRIDDIN AINI , Scientific journal of the Fergana State University: No. 1 (2023): Scientific journal of the Fergana State University (Social humanities sciences)
- , PROBLEMS OF MODERN COMPUTER ETHICS , Scientific journal of the Fergana State University: No. 2 (2023): Scientific journal of the Fergana State University (Social humanities sciences)
- Farrux Farrux, ISSUES OF TURKESTAN HISTORY IN THE WORKS OF SADRIDDIN AINI , Scientific journal of the Fergana State University: No. 1 (2023): Scientific journal of the Fergana State University (Exact and natural sciences)
- , ISSUES OF HUMANIZING THE NEEDS AND INTERESTS OF YOUTH IN AN INFORMED SOCIETY , Scientific journal of the Fergana State University: No. 2 (2024): Scientific journal of the Fergana State University (Social humanities sciences)
- , , , , , EFFECT OF CATALYSTS ON THE OXIDATION PROCESSES OF ACETYLENE ALCOHOLS , Scientific journal of the Fergana State University: No. 2 (2025): FarDU ilmiy xabarlari jurnali (Tabiiy fanlar)
- , , ALGORITHM FOR ASSESSING THE STABILITY OF A DIGITAL SYSTEM BASED ON THE CONDITION OF APPROACHING HIDDEN OSCILLATIONS , Scientific journal of the Fergana State University: No. 2 (2024): FarDU.Ilmiy xabarlar jurnali (Aniq va tabiiy fanlar)
- Aminov Farrukh Komiljon ugli, MULTIMODAL CHARACTERISTICS OF WOMEN'S LANGUAGE ON INSTAGRAM: A DISCOURSE ANALYSIS OF DIGITAL IDENTITY AND ENGAGEMENT STRATEGIES , Scientific journal of the Fergana State University: No. 2 (2025): FarDU ilmiy xabarlari jurnali (FILOLOGIYA)