sg
O‘zbekcha

DIFFERENCE IN THE AEROBIC METABOLISM OF WARM AND COLD-BLOODED ANIMALS: IMPORTANCE IN THERMOGENESIS

Authors

  • Akhmerov Rashid Nasipovich

    National University of Uzbekistan named after Mirzo Ulugbek
  • Karimov Valijon

    Fergana State University
  • Niyazmetov Bakhodir Allaberganovich

    National University of Uzbekistan named after Mirzo Ulugbek
  • Zaripov Bakridin Zaripovich

    National University of Uzbekistan named after Mirzo Ulugbek

Keywords:

thermogenesis, cold and warm-blooded animals, metabolism, gas exchange, oxygen consumption, body temperature, aerobic metabolism, mitochondria.

Abstract

It was discovered that cold-blooded species of animals (steppe turtle, sheltopusik (Pallas’ glass lizard) and water snake) have a very low aerobic metabolism, the level of which is about 10 times lower than that of warm-blooded rats. These data are consistent with literature data obtained on other animals. According to the modern literature, warm-blooded animals, when performing various physiological work, expend more energy than cold-blooded ones. Therefore, it is assumed that the body to maintain the warm-bloodedness spends a significant part of the metabolic energy.

Author Biographies

  • Akhmerov Rashid Nasipovich, National University of Uzbekistan named after Mirzo Ulugbek

    Department of Human and Animal Physiology, National University of Uzbekistan named after Mirzo Ulugbek, DSc, professor

  • Karimov Valijon, Fergana State University

    Fergana State University, Candidate of biological sciences, docent

  • Niyazmetov Bakhodir Allaberganovich, National University of Uzbekistan named after Mirzo Ulugbek

    Department of Human and Animal Physiology, National University of Uzbekistan named after Mirzo Ulugbek, PhD

  • Zaripov Bakridin Zaripovich, National University of Uzbekistan named after Mirzo Ulugbek

    Department of Human and Animal Physiology, National University of Uzbekistan named after Mirzo Ulugbek

References

Hayward A. et al. Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates. Peer J. 2016 Oct 12;4:e2569. doi: 10.7717/peerj.2569.

Tyler C.J. et al. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis / Sports Med. 2016 Nov; 46 (11):1699-1724. doi: 10.1007/s40279-016-0538-5.

Kemp S. The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zoological Journal (Linnaean Society of London), 2006, 147, 473–488.

Sieck G.C. Physiology in Perspective: Of Mice and Men. Physiology (Bethesda). 2019 Jan 1;34 (1):3-4. doi: 10.1152/physiol.00049.2018..

Gillooly J.F,. Gomez J.P, Mavrodiev E.V. A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms. Proc Biol Sci. 2017, 225;284 (1849). pii: 20162328. doi: 10.1098/rspb.2016.2328.

Neufer P.D. The Bioenergetics of Exercise / Cold Spring Harb Perspect Med. 2018 May 1;8(5):a029678. doi: 10.1101/cshperspect.a029678..

Paluch E.K. Biophysical methods in cell biology. Preface. Methods Cell Biol. 2015;125:xxv-xxvi. doi: 10.1016/s0091-679x(15)00016-3..

Madeira V.M.C. Overview of Mitochondrial Bioenergetics. Methods Mol Biol. 2018;1782:1-6. doi: 10.1007/978-1-4939-7831-1_1.

Schulte P.M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol. 2015 Jun; 218 (Pt 12):1856-66. doi: 10.1242/jeb.118851.

Akhmerov R.N. Allamuratov SH.I. Teplokrovnost’ organizma i yeyo energeticheskiye mekhanizmy. Tashkent, Natsional’nyy Universitet, 1994. (in Russian).

Akhmerov R. N., Niyazmetov B. A., 2016. Coupled and uncoupled respiration in rat cardiocytes and mitochondria. European J. Biomedical and Pharmaceutical Sciences. 3 (12), 8-16.

Akhmerov R. N., Niyazmetov B. A., Abdullayev G. R. On Novel Features of the Proton Leak and Possibility of Uncoupling Population of Mitochondria in Brown 10.5923/j.ajb.20180806.01

Akhmerov R. N, Niyazmetov B. A, Mirkhodjaev U. Z. On Novel Features of the Proton Leak and Possibility of Uncoupling Population of Mitochondria in Brown Adipose Tissue American Journal of Biological Chemistry. 2019; 7(2): 31-37.

Brand M.D. et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochemical J. 2005, 392, 353-362.

Klingenberg M. UCP1 - a sophisticated energy valve. Biochimie 134: 19-27, 2017

Wiens L. et al. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle. Front Physiol. 2017; 8: 704. doi: 10.3389/fphys.2017.00704.

Moberly W.R. The metabolic responses of the common Iguana iguana, to working and diving. Comp. Biochem. Physiol. 1968. V. 27. P. 21-32.

Tucker V.A. Energetic cost of locomotion, in animals. Соmр. Biochem. Physiol. 1970. V. 34. P. 841-846.

Bakker R.N., Locomotor energetics of Lizards and Mammals compared. Physiologist. 1972. V. 15. P. 76-84

Almatov K.T., Akhmerov R.N. Metodicheskiye ukazaniya k laboratornym zanyatiyam po kursu, Fiziologiya cheloveka i zhivotnykh, Tashkent, Natsion. Universitet, 1993. Chast' 2, str 50. (in Russian).

Downloads

Published

2023-10-26