Skip to main navigation menu Skip to main content Skip to site footer

Mathematics

No. 4 (2022): Scientific journal of the Fergana State University

INTEGRAL REPRESENTATIONS AND THE SYSTEM OF DIFFERENTIAL EQUATION OF HYPERGEOMETRIC TYPE IN PARTIAL DERIVATIVES OF THE FOURTH ORDER FOR A FUNCTION

Submitted
July 12, 2023
Published
2022-08-25

Abstract

This article studies the properties of the Kampe de Feriet function  of two fourth-order arguments. Integral representations and a system of differential equations in partial derivatives of hypergeometric type, which is satisfied by the indicated function, are proved.

References

  1. P. Appell and Kampeґ de Feґriets, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite, Gauthier - Villars, Paris, 1926.
  2. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator,Duke Math. J. 98(3) (1999), 465-483.
  3. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator II, Duke Math. J. 111(3) (2002), 561-584.
  4. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator III, Duke Math. J. 128(1) (2005), 119-140.
  5. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
  6. A. Erde’lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  7. F.I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.
  8. A.J. Fryant, Growth and complete sequences of generalized bi-axially symmetric potentials, J. Differential Equations 31(2) (1979), 155-164.
  9. Junesang Choi, Anvar Hasanov and Mamasali Turaev, Linear independent solutions for the hypergeometric Exton function, Honam Mathematical J. 33 (2011), No. 2, pp. 223-229.
  10. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683.
  11. A. Hasanov, Some solutions of generalized Rassias’s equation, Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30.
  12. A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson- Darboux equation. Intern. J. Appl. Math. Stat. 8 (M07) (2007), 30-44.
  13. A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13(8) (2008), 41-49.
  14. A. Hasanov and E.T. Karimov, Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Letters 22 (2009), 1828-1832.
  15. Hasanov, J.M. Rassias , and M. Turaev, Fundamental solution for the gen- eralized Elliptic Gellerstedt Equation, Book: "Functional Equations, Difference Inequalities and ULAM Stability Notions Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83.
  16. Anvar Hasanov, Rakhila B. Seilkhanova and Roza D. Seilova, Linearly independent solutions of the system of hypergeometric Exton function, Contemporary Analysis and Applied Mathematics Vol.3, No.2, 289-292, 2015
  17. G. Lohofer, Theory of an electro-magnetically deviated metal sphere. 1: Absorbed power, SIAM J. Appl. Math. 49 (1989), 567-581.
  18. A.W. Niukkanen. Generalized hyper-geometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983) 1813-1825.
  19. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hyper-geometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.
  20. R.J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Differential Equations 3 (1964), 43-55.
  21. A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1946), 342-354.