SOIL EROSION RISK IN TASHKENT REGION: DEM AND GIS ANALYSIS
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss6/a265Keywords:
gully erosion, GIS, DEM, Weighted Overlay, slope, flow accumulation, aspect, Tashkent region.Abstract
The article evaluates gully erosion hazard in the Tashkent region using GIS and compares a Weighted Overlay model with a gully inventory derived from Google Earth Pro. Slope, flow accumulation and aspect extracted from a DEM are combined with 40–40–20% weights to map low, medium and high hazard zones. The high-hazard class captures about 78–82% of mapped gullies, providing a reliable basis for planning erosion control measures.
References
1. Aboutaib F., Arabameri A., Hssaisoune M., Rachid R., Boudad L., Pradhan B., Avand M., Tiefenbacher J.P. Evaluating the effectiveness and robustness of machine learning models with varied geo-environmental factors for determining vulnerability to water flow-induced gully erosion // Frontiers in Environmental Science. – 2023. – Vol. 11. – Art. 1207027. – DOI: 10.3389/fenvs.2023.1207027.
2. Amiri M., Pourghasemi H.R., Ghanbarian G.A., Afzali S.F. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modelling and mapping using three machine learning algo-rithms // Geoderma. – 2019. – Vol. 340. – P. 55–69. – DOI: 10.1016/j.geoderma.2018.12.042.
3. Aouragh M.H., El Jazouli A., Barakat A., El Baghdadi M., Khellouk R., Ettaqy A., Teodoro A.C. Remote sensing and GIS-based machine learning models for spatial gully erosion prediction: A case study of Rdat watershed in Sebou basin, Morocco // Remote Sensing Applications: Society and Environment. – 2023. – Vol. 30. – Art. 100939. – DOI: 10.1016/j.rsase.2023.100939.
4. Arabameri A., Pradhan B., Lombardo L. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling // Catena. – 2019. – Vol. 183. – Art. 104223. – DOI: 10.1016/j.catena.2019.104223.
5. Arabameri A., Cerda A., Pradhan B., Tiefenbacher J.P., Lombardo L., Bui D.T. A methodological compari-son of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence // Ge-omorphology. – 2020. – Vol. 359. – Art. 107136. – DOI: 10.1016/j.geomorph.2020.107136.
6. Avand M., Janizadeh S., Naghibi S.A., Pourghasemi H.R., Khosrobeigi Bozchaloei S., Blaschke T. A com-parative assessment of Random Forest and k-Nearest Neighbor classifiers for gully erosion susceptibility mapping // Water. – 2019. – Vol. 11, No. 10. – Art. 2076. – DOI: 10.3390/w11102076.
7. Conoscenti C., Di Maggio C., Rotigliano E. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy) // Geomorphology. – 2014. – Vol. 204. – P. 399–411. – DOI: 10.1016/j.geomorph.2013.08.021.
8. Conoscenti C., Agnesi V., Cama M., Caraballo-Arias N.A., Rotigliano E. Assessment of gully erosion sus-ceptibility using multivariate adaptive regression splines and accounting for terrain connectivity // Land Degradation & Development. – 2018. – Vol. 29, No. 3. – P. 724–736. – DOI: 10.1002/ldr.2772.
9. Javidan N., Kavian A., Pourghasemi H.R., Conoscenti C., Jafarian Z. Gully erosion susceptibility mapping using multivariate adaptive regression splines-replications and sample size scenarios // Water. – 2019. – Vol. 11, No. 11. – Art. 2319. – DOI: 10.3390/w11112319.
10. Lei X., Chen W., Avand M., Janizadeh S., Kariminejad N., Shahabi H., Costache R., Shirzadi A., Mosavi A. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran // Remote Sensing. – 2020. – Vol. 12, No. 15. – Art. 2478. – DOI: 10.3390/rs12152478.
11. Liu C., Wang J., Li Z., Zhao G., Gao J., Zhang Q., Li H., Cheng M., Zhang S. Gully erosion susceptibility as-sessment based on machine learning: A case study of watersheds in Tuquan County in the black soil region of North-east China // Catena. – 2023. – Vol. 222. – Art. 106798. – DOI: 10.1016/j.catena.2022.106798.
12. Rahmati O., Haghizadeh A., Pourghasemi H.R., Noormohamadi F. Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison // Natural Hazards. – 2016. – Vol. 82, No. 2. – P. 1231–1258. – DOI: 10.1007/s11069-016-2239-7.
13. Saha S., Roy J., Arabameri A., Blaschke T., Bui D.T. Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India // Sensors. – 2020. – Vol. 20, No. 5. – Art. 1313. – DOI: 10.3390/s20051313.
14. Tien Bui D., Shirzadi A., Shahabi H., Chapi K., Khaledi Darvishan A., Pham B.T., Chen W., Khosravi K., Pradhan B., Panahi M., Lee S. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran) // Sensors. – 2019. – Vol. 19, No. 11. – Art. 2444. – DOI: 10.3390/s19112444.
15. Titti G., Camici S., Brocca L. Cloud-based interactive susceptibility modeling of gully erosion in Google Earth Engine // International Journal of Applied Earth Observation and Geoinformation. – 2022. – Vol. 115. – Art. 103089. – DOI: 10.1016/j.jag.2022.103089.
16. Yang A., Wang C., Pang G., Long Y., Wang L., Cruse R.M., Yang Q. Gully erosion susceptibility mapping in highly complex terrain using machine learning models // ISPRS International Journal of Geo-Information. – 2021. – Vol. 10, No. 10. – Art. 680. – DOI: 10.3390/ijgi10100680.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific journal of the Fergana State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.