logo
O‘zbekcha

SECONDARY METABOLITES OF THE FUNGUS TRICHODERMA ASPERELLUM AND THEIR BIOLOGICAL IMPORTANCE

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss6/a216

Keywords:

antifungal, antioxidant, biological control, phytopathogenic fungi, secondary metabolite, Trichoderma ssp, chromatography.

Abstract

Today, the increasing demand for food and the use of synthetic pharmaceutical chemical compounds in the agricultural production of fruits and vegetables are causing a growing number of negative changes in public health and the soil environment. Metabolites produced by Trichoderma species serve as a sustainable alternative for controlling plant diseases and mitigating harmful substances released by fungi. As part of this study, we presented a literature review of several metabolites concerning Trichoderma spp regarding the biologic activity and isolated some secondary metabolites concerning T. asperellum and described their activity. We summarize and group various antifungal secondary metabolites of Trichoderma spp. We consider in full detail some aspects concerning phytopathogenic fungi, their chemistry and biosynthesis. For the isolation of metabolites, thin-layer chromatography was performed for detection using columnar chromatography and the obtained substances were investigated by GS-MS analysis. As a result, it was found that the chloroform:methanol (5:1) system is characterized by a number of substances that differ from the metabolites that are separated from the other solvent system.

Author Biographies

  • Nomozova Mohigul Zavqi qizi, Basic doctoral student, Lecturer of the Department of Inorganic Chemistry, Karshi State Uversity

    Basic doctoral student, Lecturer of the Department of Inorganic Chemistry, Karshi State Uversity

  • Kamolov Luqmon Sirojiddinovich, Doctor of Chemical Sciences, Professor, Dean of the Faculty of Chemistry and Biology. Karshi State university.

    Doctor of Chemical Sciences, Professor, Dean of the Faculty of Chemistry and Biology. Karshi State university.

  • Nakhatov Innat, Candidate of chemical sciences, associate professor, Karshi State university.

    Candidate of chemical sciences, associate professor, Karshi State university.

  • Umirov Nurbek Norbutayevich, Associate Professor, Department of Inorganic Chemistry, Karshi State University.

    Associate Professor, Department of Inorganic Chemistry, Karshi State University. 

  • Ahmadova Dilfuza Oybek qizi, Student at Karshi State Univesity.

    Student at Karshi State Univesity.

References

1. Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. // PLoS One. 2017 Jun 23; 12(6): e0179957. doi: 10.1371/journal.pone.0179957

2. Podder D, Ghosh SK. A new application of Trichoderma asperellum as an anopheline larvicide for ecofriendly management in medical science. Sci Rep. 2019 Feb 1; 9(1):1108. doi: 10.1038/s41598-018-37108-2.

3. Liu R, Chen M, Gao J, Luo M, Wang G. Identification of antagonistic fungi and their antifungal activities against aconite root rot pathogens. // Plant Signal Behav. 2023 Dec 31; 18(1):2211852. doi: 10.1080/15592324.2023.2211852.

4. Intana W, Kheawleng S, Sunpapao A. Trichoderma asperellum T76-14 Released Volatile Organic Compounds against Postharvest Fruit Rot in Muskmelons (Cucumis melo) Caused by Fusarium incarnatum. // J Fungi (Basel). 2021 Jan 12; 7(1):46. doi: 10.3390/jof7010046.

5. Stracquadanio C, Quiles JM, Meca G, Cacciola SO. Antifungal Activity of Bioactive Metabolites Produced by Trichodermaasperellum and Trichodermaatroviride in Liquid Medium. J Fungi (Basel). 2020 Nov 1; 6(4):263. doi: 10.3390/jof6040263.

6. Silva FA, Liotti RG, Boleti APA, Reis ÉM, Passos MBS, Dos Santos EL, Sampaio OM, Januário AH, Branco CLB, Silva GFD, Mendonça EAF, Soares MA. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. // PLoS One. 2018 Apr 12; 13(4): e0195874. doi: 10.1371/journal.pone.0195874.

7. Degani O, Khatib S, Becher P, Gordani A, Harris R. Trichoderma asperellum Secreted 6-Pentyl-α-Pyrone to Control Magnaporthiopsis maydis, the Maize late Wilt disease agent. Biology (Basel). 2021 Sep 11; 10(9):897. doi: 10.3390/biology10090897.

8. Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. // PLoS One. 2017 Jun 23; 12(6): e0179957. doi: 10.1371/journal.pone.0179957.

9. Leylaie S, Zafari D. Antiproliferative and Antimicrobial Activities of Secondary Metabolites and Phylogenetic Study of Endophytic Trichoderma Species from Vinca Plants. // Front Microbiol. 2018 Jul 11; 9:1484. doi: 10.3389/fmicb.2018.01484.

10. Xue-Yin Wang, Ting-Ting Xu, Li-Jingfei Sun, Rong-Huan Chen, Shuang Su, Xue-Qiong Yang, Ya-Bin Yang, Zhong-Tao Ding. The chemical diversity, the attractant, anti-acetylcholinesterase, and antifungal activities of metabolites from biocontrol Trichoderma harzianum uncovered by OSMAC strategy. // Bioorganic Chemistry, Volume 114, September 2021, 105148. https://doi.org/10.1016/j.bioorg.2021.105148

11. Shanchong Chen, Haohua Li, Yuchan Chen, Saini Li, Jianlin Xu, Heng Guo, Zhaoming Liu, Shuang Zhu, Hongxin Liu, Weimin Zhang. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus Trichoderma coningiopsis A729. Bioorganic Chemistry, Volume 86, May 2019, Pages 368-374 https://doi.org/10.1016/j.bioorg.2019.02.005

12. Zhen-Zhen Shi, Sheng-Tao Fang , Feng-Ping Miao, Xiu-Li Yin, Nai-Yun Ji. Trichocarotins A–H and trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus Trichoderma virens. // Bioorganic Chemistry, Volume 81, December 2018, pp. 319-325. https://doi.org/10.1016/j.bioorg.2018.08.027

13. Xiao-Shan Shi, Hong-Lei Li, Xiao-Ming Li, Dun-Jia Wang, Xin Li, Ling-Hong Meng, Xing-Wang Zhou, Bin-Gui Wang. Highly oxygenated polyketides produced by Trichoderma coningiopsis QA-3, an endophytic fungus obtained from the fresh roots of the medicinal plant Artemisia argyi. Bioorganic Chemistry, Volume 94, January 2020, 103448. https://doi.org/10.1016/j.bioorg.2019.103448

14. Viterbo, A.; Wiest, A.; Brotman, Y.; Chet, I.; Kenerley, C. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 2007, 8, 737–746.]

15. Leitgeb, B.; Szekeres, A.; Manczinger, L.; Vagvolgyi, C.; Kredics, L. The history of alamethicin: A review of the most extensively studied peptaibol. // Chem. Biodivers. 2007, 4, 1027–1051.

16. Degenkolb, T.; Berg, A.; Gams, W.; Schlegel, B.; Grafe, U. The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. // J. Pept. Sci. 2003, 9, 666–678.

17. Tao L, Zhang Y, Li Y, Luo L, Zhang Z, Chen J. Antagonistic activity of volatile metabolites from Trichoderma asperellum. // Sheng Wu Gong Cheng Xue Bao. 2020 Jun 25; 36(6):1181-1189. doi: 10.13345/j.cjb.190442.

18. Hernández G, Ponce de la Cal A, Louis Y, Baró Robaina Y, Coll Y, Spengler I, Mirabal-Gallardo Y. Identification of Secondary Metabolites by UHPLC-ESI-HRMS/MS in Antifungal Strain Trichoderma harzianum (LBAT-53). // J Fungi (Basel). 2024 Aug 3; 10(8):547. doi: 10.3390/jof10080547.

19. Ferreira AM, da Silva Sena I, Curti J, de Souza AA, Dos Santos Lima PC, Rodriguez ABL, da Silva Ramos R, de Souza Pinheiro WB, Ferreira IM, Carvalho JCT. Trichoderma asperellum Extract Isolated from Brazilian Nuts (Bertholletia excelsa BONPL): In Vivo and In Silico Studies on Melanogenesis in Zebrafish. Microorganisms. 2023 Apr 21; 11(4):1089. doi: 10.3390/microorganisms11041089.

20. Nomozova M.Z., Samurodova M.Z., Kamolov L.S., Ruziyev S.Q. MASS-CHROMATOGRAPHIC ANALYSIS OF METABOLITES OF THE FUNGUS TRICHODERMA ASPERELLUM. Univrsum technchiskiy nauk no. 4 (133) April, 2025, pp.46-50. DOI - 10.32743/UniTech.2025.133.4.19875

21. National Center for Biotechnology Information // PubChem Compound Summary for CID 78358468. Retrieved July 16, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/78358468.

22. Karthik Y, Ishwara Kalyani M, Krishnappa S, Devappa R, Anjali Goud C, Ramakrishna K, Wani MA, Alkafafy M, Hussen Abduljabbar M, Alswat AS, Sayed SM, Mushtaq M. Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. // Front Microbiol. 2023 Feb 17; 14:1096826. doi: 10.3389/fmicb.2023.1096826.

23. David Jiménez-Arias, Francisco J. García-Machado, Sarai Morales-Sierra, Juan C. Luis, Emma Suarez, Mer-cedes Hernández, Francisco Valdés, Andrés A. Borges. Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environmental and Experimental Botany, Volume 158, February 2019, pp. 215-222. https://doi.org/10.1016/j.envexpbot.2018.10.034

24. Wen-chun Lin, Kai-Chen Hsu, Ming-Feng You, Kuo-Hua Lee, Chau-Hwa Chi, Jyh-Yih Chen. Octanoic acid pro-motes clearance of antibiotic-tolerant cells and eradicates biofilms of Staphylococcus aureus isolated from recurrent bovine mastitis. Volume 6, 15 December 2023, 100149 https://doi.org/10.1016/j.bioflm.2023.100149

25. National Center for Biotechnology Information. // PubChem Compound Summary for CID 442911, Humulone. Retrieved July 16, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Humulone.

Downloads

Published

2026-02-03

How to Cite

SECONDARY METABOLITES OF THE FUNGUS TRICHODERMA ASPERELLUM AND THEIR BIOLOGICAL IMPORTANCE. (2026). Scientific Journal of the Fergana State University, 31(6), 216. https://doi.org/10.56292/SJFSU/vol31_iss6/a216