COMPARATIVE THERMAL DEGRADATION BEHAVIOUR OF PRISTINE AND MODI-FIED POLYVINYL CHLORIDE: INFLUENCE OF CUO AND FE3O4 NANOPARTICLES
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss5/a118Keywords:
Polyvinyl chloride, PPE-2, CuO nanoparticles, Fe3O4 nanoparticles, TGA, DSC, thermal stability.Abstract
In this study, the thermal degradation behaviour of pristine polyvinyl chloride (PVC), urea-modified PVC (PPE-2), and functional nanocomposites prepared with CuO and Fe3O4 nanoparticles was comparatively investigated. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to evaluate weight loss, degradation stages, and thermal stability. The results showed that urea modification enhances the thermal resistance of PVC, while the incorporation of metal oxide nanoparticles further improves stability and alters the decomposition mechanism. The findings confirm the stabilizing role of CuO and Fe3O4 nanoparticles and demonstrate the potential application of such materials in areas requiring high thermal and chemical resistance.
References
1. Chidara A, Cheng K, Gallear D. Engineering Innovations for Polyvinyl Chloride (PVC) Recycling: A Sys-tematic Review of Advances, Challenges, and Future Directions in Circular Economy Integration. Machines. 2025;13(5):362. doi:10.3390/machines13050362
2. Miliute-Plepiene J, Fråne A, Almasi AM. Overview of polyvinyl chloride (PVC) waste management prac-tices in the Nordic countries. Clean Eng Technol. 2021;4:100246. doi:10.1016/j.clet.2021.100246
3. Çetin A, Erzengin SG, Alp FB. Various Combinations of Flame Retardants for Poly (vinyl chloride). Open Chem. 2019;17(1):980-987. doi:10.1515/chem-2019-0105
4. Cao R, Zhang MQ, Jiao Y, et al. Co-upcycling of polyvinyl chloride and polyesters. Nat Sustain. 2023;6(12):1685-1692. doi:10.1038/s41893-023-01234-1
5. Alshaikh A, Ezendu S, Ryoo D, et al. PVC Modification through Sequential Dehydrochlorination–Hydrogenation Reaction Cycles Facilitated via Fractionation by Green Solvents. ACS Appl Polym Mater. 2024;6(16):9656-9662. doi:10.1021/acsapm.4c01453
6. Campisi L, La Motta C, Napierska D. Polyvinyl chloride (PVC), its additives, microplastic and human health: Unresolved and emerging issues. Sci Total Environ. 2025;960:178276. doi:10.1016/j.scitotenv.2024.178276
7. Vikhareva IN, Abramian A, Manojlović D, Bol’shakov O. Features of Thermal Stabilization of PVC Modi-fied with Microstructured Titanium Phosphate. Polymers. 2025;17(15):2140. doi:10.3390/polym17152140
8. Singh P, Yadav P, Kaur Sodhi K, Tomer A, Bali Mehta S. Advancement in the synthesis of metal com-plexes with special emphasis on Schiff base ligands and their important biological aspects. Results Chem. 2024;7:101222. doi:10.1016/j.rechem.2023.101222
9. Akhtar M, Shahzadi S, Arshad M, Akhtar T, Janjua MRSA. Metal oxide-polymer hybrid composites: a comprehensive review on synthesis and multifunctional applications. RSC Adv. 2025;15(23):18173-18208. doi:10.1039/D5RA01821H
10. Ghazzy A, Naik RR, Shakya AK. Metal–Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers. 2023;15(9):2167. doi:10.3390/polym15092167
11. Alkhaldi H, Alharthi S, Alharthi S, et al. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv. 2024;14(45):33143-33190. doi:10.1039/D4RA05269B
12. Bekchanov D, Mukhamediev M, Babojonova G, Lieberzeit P, Su X. Anion exchange material based on polyvinylchloride and urea for the removal of chromium(vi) ions from aqueous solutions. CLEAN – Soil Air Water. 2023;51(10):2200411. doi:10.1002/clen.202200411
13. Bekchanov D, Mukhamediev M, Inkhonova A, et al. Magnetic and reusable Fe3O4/PPE-2 functional ma-terial for efficient photodegradation of organic dye. Environ Res. 2025;269:120911. doi:10.1016/j.envres.2025.120911
14. Bekchanov D, Eshtursunov D, Inkhonova A, et al. Functionalized polymer & metal oxide nanocomposite material for efficiency antibacterial and photocatalytic applications. React Funct Polym. 2025;216:106457. doi:10.1016/j.reactfunctpolym.2025.106457
15. Stromberg RR, Straus S, Achhammer BG. Thermal decomposition of poly(vinyl chloride). J Polym Sci. 1959;35(129):355-368. doi:10.1002/pol.1959.1203512904
16. Yang S, Wang Y, Man P. Kinetic Analysis of Thermal Decomposition of Polyvinyl Chloride at Various Ox-ygen Concentrations. Fire. 2023;6(10):404. doi:10.3390/fire6100404
17. Krongauz VV, Lee YP, Bourassa A. Kinetics of thermal degradation of poly(vinyl chloride). J Therm Anal Calorim. 2011;106(1):139-149. doi:10.1007/s10973-011-1703-6
18. Altarawneh S, Al-Harahsheh M, Buttress A, Dodds C, Kingman S. A thermo-kinetic investigation on the thermal degradation of polyvinyl chloride in the presence of magnetite and hematite. Thermochim Acta. 2022;718:179390. doi:10.1016/j.tca.2022.179390
19. Yu J, Sun L, Ma C, Qiao Y, Yao H. Thermal degradation of PVC: A review. Waste Manag. 2016;48:300-314. doi:10.1016/j.wasman.2015.11.041
20. Wang X, Li B, Xia Z, et al. Effects of Copper(II) Oxide on the Co-Pyrolysis of Waste Polyester Enameled Wires and Poly(vinyl chloride). Polymers. 2024;16(1):27. doi:10.3390/polym16010027
21. Altarawneh S, Al-Harahsheh M, Ali L, et al. Thermal degradation of polyvinyl chloride in the presence of lead oxide: A kinetic and mechanistic investigation. Chem Eng J. 2024;493:152873. doi:10.1016/j.cej.2024.152873
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific journal of the Fergana State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Most read articles by the same author(s)
- , , , , , , KINETICS OF SORPTION OF Pb (II) IONS FROM ARTIFICIAL SOLUTIONS ON NATURAL POLYMERS , Scientific journal of the Fergana State University: No. 4 (2022): Scientific journal of the Fergana State University