logo
O‘zbekcha

THE DEVELOPMENT OF NEXT-GENERATION BOILER FUELS: AN ANALYSIS OF GLOBAL AND NATIONAL CHEMICAL RESEARCH

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss5/a114

Keywords:

polymer waste, pyrolysis, boiler fuel, catalytic conversion, thermochemical process

Abstract

This research analyzes modern scientific achievements in the field of producing boiler fuel from polymer waste. The article examines the chemical mechanisms of the pyrolysis process, catalytic systems, and technological parameters. The study results showed that 60-85% of plastic waste can be converted into liquid fuel during the pyrolysis process. The highest efficiency is achieved when the fast pyrolysis process is carried out at a temperature of 450-600°C. The article compares and analyzes the differences, achievements, and shortcomings in the scientific works of global and local scientists.

Author Biography

  • Qurbonaliyev Komronbek Azamat o‘g‘li, Farg‘ona davlat universiteti

    Farg‘ona davlat universiteti, tayanch doktarant

References

1. Patni, N., Shah, P., Agarwal, S., & Singhal, P. (2013). Alternate strategies for conversion of waste plastic to fuels. International Scholarly Research Notices, 2013(1), 902053..

2. Soni, V. K., Singh, G., Vijayan, B. K., Chopra, A., Kapur, G. S., & Ramakumar, S. S. V. (2021). Thermo-chemical recycling of waste plastics by pyrolysis: a review. Energy & Fuels, 35(16), 12763-12808.

3. Idumah, C. I. (2022). Recent advancements in thermolysis of plastic solid wastes to liquid fuel. Journal of Thermal Analysis & Calorimetry, 147(5).

4. Ciliz, N. K., Ekinci, E., & Snape, C. E. (2004). Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Waste management, 24(2), 173-181.

5. Chang, Z., Qu, Y., Gu, Z., Zhou, L., Li, R., Sun, Z., ... & Chu, M. (2021). Production of aromatic hydrocarbons from catalytic pyrolysis of Huadian oil shale using ZSM-5 zeolites as catalyst. Journal of Analytical and Applied Pyroly-sis, 159, 104990.

6. Chan, F. L., & Tanksale, A. (2014). Review of recent developments in Ni-based catalysts for biomass gasi-fication. Renewable and Sustainable Energy Reviews, 38, 428-438.

7. Jalalifar, S., Abbassi, R., Garaniya, V., Hawboldt, K., & Ghiji, M. (2018). Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor. Fuel, 234, 616-625.

8. Bayramoğlu, K., & Nuran, M. (2024). Energy, exergy, sustainability evaluation of the usage of pyrolytic oil and conventional fuels in diesel engines. Process Safety and Environmental Protection, 181, 324-333.

9. Krutof, A., & Hawboldt, K. (2016). Blends of pyrolysis oil, petroleum, and other bio-based fuels: a review. Renewable and Sustainable Energy Reviews, 59, 406-419.

10. Sadulloyevich, T. F., & Norkulovna, M. D. (2025). POLIETILEN CHIQINDILARINI QAYTA ISH-LASH. IZLANUVCHI, 1(6), 128-135.

11. Балтаева, М. М. (2017). РАЗВИТИЕ ПОЛИМЕРНОЙ ПРОИЗВОДСТВЕ В УЗБЕКИСТАНЕ. Актуальные научные исследования в современном мире, (6-2), 129-133.

12. Lubongo, C., Congdon, T., McWhinnie, J., & Alexandridis, P. (2022). Economic feasibility of plastic waste conversion to fuel using pyrolysis. Sustainable Chemistry and Pharmacy, 27, 100683.

Downloads

Published

2026-01-27

How to Cite

THE DEVELOPMENT OF NEXT-GENERATION BOILER FUELS: AN ANALYSIS OF GLOBAL AND NATIONAL CHEMICAL RESEARCH. (2026). Scientific Journal of the Fergana State University, 31(5), 114. https://doi.org/10.56292/SJFSU/vol31_iss5/a114