logo
O‘zbekcha

STUDYING AND ANALYZING THE COMPOSITION OF THE MINERAL FROM THE “DAUTOSH” DEPOSIT USING THE LASER DIFFRACTION METHOD

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss6/a%25p

Keywords:

Kalit so'zlar: mineral o’g‘itlar, lazerli defraksiya, mineral, xomashyo, marganesli og‘itlar, funksional xususiyatlari.

Abstract

The purpose of this study is to investigate the composition of a mineral sample from the “Dautosh” deposit located in southern Uzbekistan and to evaluate its potential as a source of mineral fertilizers. The research employed the laser diffraction method to determine particle size, volume distribution, and elemental composition. The findings revealed that the average particle size is 5.61 μm, with manganese (75.02%), calcium (12.53%), iron (5.81%), and silicon (5.32%) as the primary components. The environmental safety of the mineral was also assessed. It is concluded that the use of this mineral for producing manganese-based fertilizers could contribute to the establishment of a new chemical industry sector in Uzbekistan and enhance agricultural productivity.

Author Biographies

  • Jo‘rayev Ruzimurod Sattorovich, Qarshi davlat texnika universiteti

    Qarshi davlat texnika universiteti, “Sanoat muhandisligi” kafedrasi katta o’qituvchisi

  • Navruzbek Qaxxorov, Qarshi davlat texnika universiteti

    Qarshi davlat texnika universiteti, “Sanoat muhandisligi” kafedrasi katta o’qituvchisi

  • Mardonov O‘ktam Mardonovich, Buxoro davlat universiteti, “Kimyo va neft-gaz texnologiyalari”kafedrasi dotsenti

    Buxoro davlat universiteti, “Kimyo va neft-gaz texnologiyalari”kafedrasi dotsenti

References

1. Lin, S.; Pi, Y.; Long, D.; Duan, J.; Zhu, X.; Wang, X.; He, J.; Zhu, Y. Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean—Maize Intercropping Systems. Agriculture 2022, 12, 1428.

2. Jurayev, R.S.; Eshkulov, B.R.u.; Kakhkhorov, N.T.u. Production of Complex and Mixed Fertilizers by Acidic Processing of Phosphorites. Eng. Proc. 2024, 67, 59. https://doi.org/10.3390/engproc202406705

3. Amlinger, F.; Pollack, M.; Favoino, E. Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilizers; Final Report for the European Commission; Technical Office for Agriculture, EU: Brussels, Belgium, 2004.

4. Modaihsh, A.; AI-Swailem, M.; Mahjoub, M. Heavy Metals Content of Commercial Inorganic Fertilizers Used in the Kingdom of Saudi Arabia. J. Agric. Mar. Sci. 2004, 9, 21–25.

5. McBride, M.B.; Spiers, G. Trace element content of selected fertilizers and dairy manures as determined by ICP-MS. Commun. Soil Sci. Plant Anal. 2001, 32, 139–156.

6. Chibueze, U.; Chinwendu, S.; Oriaku, O.; Ifeanyi, N.; Emenike, E. Short-term appraisal of heavy metal contents in commercial inorganic fertilizers blended and marketed in Nigeria. Eur. J. Phys. Agric. Sci. 2016, 4, 18–25.

7. Wyszkowski, M.; Brodowska, M.S. Content of Trace Elements in Soil Fertilized with Potassium and Nitrogen. Agriculture 2020, 10, 398.

8. Naz, S.; Fazio, F.; Habib, S.S.; Nawaz, G.; Attaullah, S.; Ullah, M.; Hayat, A.; Ahmed, I. Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment. Sustainability 2022, 14, 13441.

9. Minnesota Department of Health. Heavy Metals in Fertilizers. Health Risk Assessment. Available online: health.state.mn.us/communities/environment/risk/studies/metals.html (accessed on 19 december 2024).

10. El-Taher, A. Analytical methodology for the determination of concentration of pollutants and radioactive elements in phosphate fertilizer used in Saudi Arabia. Environ. Sci. Indian J. 2013, 8, 71–78.

11. A.S.Abdel Haleem, S.M.A.El-Bahi Sroor,E.Zohny; Heavy metals and rare earth elements in phosphate fertlizer components using instrumental neutron activation analysis,Appl.Radiat.Isotopes., 55, 569-573 (2001).

12. G.E.AbbadyAdel, M.A.M.Uosif,A.El-Taher; Natural adioactivity and dose rate assessment of phos- phate rocks from wadi El-Mashash and El- Mahamid mines, Egypt., J.Environl.Radioact., 84, 65-78 (2005).

13. N.Akhtar, M.Tufail, M.Ashraf; Natural environ- mental radioactivity and estimation of radiation ex- posure from saline soils, International Journal of Environmental Science & Technology, 1(4), 279- 285 (2005a)

14. N.Akhtar, M.Tufail, M.Ashraf, M.Mohsin Iqbal; Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan.,Radiation Measurements, 39, 11- 14 (2005b).

15. K.Edgell; USEPAmethod study 37-SW-846 method A.El-Taher 77 Current Research Paper ESAIJ, 8(2) 2013 An Indian Journal Environmental Science 3050 acid diagram of sediments, sludges and soils EPA, Contract No. 68-03-3254 (1988).

16. Gimeno-Garcia, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the aplication of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25.

17. Nicholson, F.; Chambers, B.; Alloway, B.J.; Hird, A.; Smith, S.; CarltonSmith, C. In An Inventory of Heavy Metal Inputs to Agricultural Soils in England and Wales, Proceedings of the 16th World Congress of Soil Science, Montpellier, France, 1998; 6.

18. Raven, K.P.; Loeppert, R.H. Trace Element Composition of Fertilizers and Soil Amendments. J Environ. Qual. 1997, 26, 551–557.

19. Raven, K.P.; Reynolds, J.W.; Loeppert, R.H. Trace Element Analyses of Fertilizers and Soil Amendments by Axial-View Inductively-Coupled Plasma Atomic Emission Spectrophotometry. Commun. Soil Sci. Plant Anal. 1997, 28, 237–257.

20. Rahman, M.S.; Hossain, S.M.; Rahman, M.T.; Kabir, M. Analysis of Iron, Scandium, Samarium, and Zinc in Commercial Fertilizers and the Chemistry behind the Stability of These Metals in the Fertilizers. J. Agric. Chem. Environ. 2019, 8, 155–171.

21. Aswood, M.S. Determination of Heavy Metals in Fertilizer Samples by X-ray Fluorescence Techniques. J. Univ. Babylon Pure Appl. Sci. 2017, 25, 1778–1785.

22. Azzi, V.; Kazpard, V.; Lartiges, B.; Kobeissi, A.; Kanso, A.; El Samrani, A.G. Trace Metals in Phosphate Fertilizers Used in Eastern Mediterranean Countries. CLEAN Soil Air Water 2017, 45.

23. Drake, B.L.; MacDonald, B.L.; Shannon, R.F., Jr. Introduction, Chapter 1. In Advances in Portable X-ray Fluorescence Spectrometry: Instrumentation, Application and Interpretation, 1st ed.; Drake, B.L., MacDonald, B.L., Eds.; Royal Society of Chemistry: London, UK, 2022; pp. 1–10.

24. Brouwer, P. Theory of XRF: Getting Acquainted with the Principles; PANalytical B.V.: Almelo, The Netherlands, 2010; Available online: https://www.chem.purdue.edu/xray/docs/Theory%20of%20XRF.pdf (accessed on 20 december 2023).

25. Takahashi, G. Sample preparation for X-rax fluorescence analysis. Tech. Artic. Rigaku J. 2015, 31, 26–30.

26. Rydberg, J. Wavelength dispersive X-ray fluorescence spectroscopy as a fast, non-destructive and cost-effective analytical method for determining the geochemical composition of small loose-powder sediment samples. J. Paleolimnol. 2014, 52, 265–276.

27. Injuk, J.; Van Grieken, R.; Blank, A.; Eksperiandova, L.; Buhrke, V. Chapter Specimen Preparation. In Handbook of Practical X-ray Fluorescence Analysis, 1st ed.; Beckhoff, B., KanngieЯer Habil, B., Langhoff, N., Wedell, R., Wolff, H., Eds.; Springer:Berlin/Heidelberg, Germany, 2006; pp. 411–432.

28. Marguн, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumenta-tion, applications and recent trends. Chemosphere 2022, 303, 135006.

29. ISO 13196; Soil Quality—Screening Soils for Selected Elements by Energy-Dispersive X-ray Fluorescence Spectrometry Using a Handheld or Portable Instrument. Technical Committee ISO/TC 190. International Organization for Standardization: Geneva, Switzerland, 2015; pp. 1–12.

30. US EPA. Method 6200; Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentration in Soiland Sediment; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–32. Available online: https: //www.epa.gov/hw-sw846/sw-846-test-method-6200-field-portable-x-ray-fluorescence-spectrometry-determination (accessed on 18 december 2023).

31. BIPEA. Proficiency Testing Program. In Official Reports for 2021, 2022 and 2023; BIPEA: Paris, France, 2023.

32. National Institute of Standards and Technology, Department of Commerce. Certificate of Analysis; Standard Reference Material 2711a; Montana II Soil: Gaithersburg, MD, USA, 2018; pp. 1–7.

33. WEPAL. Evaluating Programme for Analytical Laboratories International Soil-Analytical Exchange (ISE) Program; Annual Report for 2015; Wageningen University Environmental Sciences: Wageningeng, The Netherlands, 2015; pp. 1–391.

34. Senesil, G.S.; Baldassarre, G.; Senesi, N.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377.

35. Reyes Pinto, K.; Meza-Contreras, V.; Alegre-Orihuela, J.C.; Reategui-Romero, W. Bioavailability and Solubility of Heavy Metals and Trace Elements during Composting of Cow Manure and Tree Litter. Appl. Environ. Soil Sci. 2020, 2020, 5680169.

36. Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Chen, S.; Wang, R.; Xu, P.; Cheng, M.; Zhang, C.; Xue, W. Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. Sci. Total Environ. 2019, 666, 1126–1133.

37. Bo˙zym, M. Heavy metal content in compost and earthworms from home composters. Environ. Prot. Nat. Resour. 2017, 28, 1–4.

Published

2026-02-03

How to Cite

STUDYING AND ANALYZING THE COMPOSITION OF THE MINERAL FROM THE “DAUTOSH” DEPOSIT USING THE LASER DIFFRACTION METHOD. (2026). Scientific Journal of the Fergana State University, 31(6). https://doi.org/10.56292/SJFSU/vol31_iss6/a%p