logo
O‘zbekcha

ГАЛЛИЙ: ЭКОЛОГИЧЕСКИЕ РИСКИ, МЕТОДЫ АНАЛИЗА И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ

Authors

DOI:

https://doi.org/10.56292/SJFSU/vol31_iss6/a%25p

Keywords:

галлий, экологические риски, токсичность, геохимия, методы анализа, электроника, переработка отходов, ресурсосбережение

Abstract

Галлий является редким элементом, получающим всё большее значение в современной электронике, солнечной энергетике и оптоэлектронных приборах. В работе рассмотрены геохимические особенности миграции Ga, его возможные экологические риски, связанные с поступлением из промышленных источников, а также современные методы определения в природных и техногенных объектах. Особое внимание уделено перспективам вторичной переработки и утилизации электронных отходов, содержащих Ga, и направлениям его применения в материалах и полупроводниковых технологиях. Отмечается ограниченность токсикологических данных и необходимость дальнейших исследований для оценки воздействия на биоту и человека.

Author Biographies

  • PhD, Бобожонов Хикмат Шавкатович, PhD

    Главный специалист, кандидат химических наук, Департамент координации специальных операций, Министерство внутренних дел Республики Узбекистан, Ташкент, Узбекистан

  • Профессор, доктор химических наук Усманова Хилола Уматалиевна, Профессор, доктор химических наук

    Профессор, доктор химических наук, Кафедра общей тактики и оперативного искусства, Университет общественной безопасности Республики Узбекистан, Ташкентская область, Узбекистан

  • Профессор, доктор химических наук, Сманова Зулайхо Асаналиевна, Профессор, доктор химических наук

    Профессор, доктор химических наук, заведующая кафедрой аналитической химии, факультет химии, Национальный университет Узбекистана, Ташкент, Узбекистан.

References

1. Larichkin F.D., Cherepovitsyn A.E., Novoseltseva V.D., Goncharova L.I. Sostoyanie i perspektivy rossiyskogo i mirovogo rynka galliya [Status and prospects of the Russian and global gallium market]. Izvestiya UGGU. 2017;(4(48)). Available at: https://cyberleninka.ru/article/n/sostoyanie-i-perspektivy-rossiyskogo-i-mirovogo-rynka-galliya (accessed 18 Aug 2025).

2. U.S. Geological Survey. Mineral commodity summaries: Gallium. 2024 edition. Reston, VA: USGS; 2024.

3. U.S. Geological Survey. Mineral commodity summaries: Gallium. 2025 edition. Reston, VA: USGS; 2025. https://doi.org/10.3133/mcs2025

4. European Commission. Critical raw materials act (CRMA) & 2023 CRM list. Official Journal of the EU. 2024.

5. Yandem G., Jabłońska-Czapla M. Review of indium, gallium, and germanium as emerging contaminants: occurrence, speciation and evaluation of the potential environmental impact. Arch Environ Prot. 2024;50(3):84–99. https://doi.org/10.24425/aep.2024.151688

6. Batley G.E., Campbell P.G.C. Metal contaminants of emerging concern in aquatic systems. Environ Chem. 2022;19(1):23–40. https://doi.org/10.1071/EN22030

7. Qu Y., Xu Y., Tang H., Liu H., Liu J. Gallium recovery from bauxite residue: opportunities and challenges. Minerals. 2024;14(3):279. https://doi.org/10.3390/min14030279

8. Teng Y., Wang C., Liu S., Sun H., Li W., Wang L. Recovery of gallium, indium and germanium from waste solar panels: challenges and perspectives. Resour Conserv Recycl. 2025;198:107239. https://doi.org/10.1016/j.resconrec.2024.107239

9. Jia Y., Chen J., Chen H., et al. Anthropogenic cycle of gallium in China: stocks, flows, and environmental implications. Resour Conserv Recycl. 2022;186:106541. https://doi.org/10.1016/j.resconrec.2022.106541

10. Zheng L., Zhang S., Wang Y., Chen J. Recycling and recovery of gallium from electronic waste: current status and future perspectives. J Clean Prod. 2023;383:135438. https://doi.org/10.1016/j.jclepro.2022.135438

11. Kluczka J. Recovery of gallium from waste LED industry: hydrometallurgical processes and challenges. Sep Purif Technol. 2024;320:124004. https://doi.org/10.1016/j.seppur.2023.124004

12. Uryu T., Takahashi K., Nishimura T., Yamamoto A. Emission of arsenic and gallium from waste incineration of GaAs-containing materials. J Mater Cycles Waste Manag. 2003;5:28–35. https://doi.org/10.1007/s10163-002-0076-2

13. Dhiman S., Chandel M., Kumar V., Singh S. Advances in biohydrometallurgy for recovery of gallium and indium: recent developments and future prospects. Hydrometallurgy. 2024;225:107632. https://doi.org/10.1016/j.hydromet.2023.107632

14. Jain R., Singh P., Yadav A. Biosorption of gallium(III) by immobilized microbial biomass: mechanistic insights and process optimization. Bioresour Technol. 2019;289:121735. https://doi.org/10.1016/j.biortech.2019.121735

15. Wood S.A., Samson I.M. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev. 2006;28(1):57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002

16. Yuan W., Gong Y., Chen J., Wang Z., Huang F., Yang X., et al. Gallium isotope constraints on the intense weathering of basalt. Geochim Cosmochim Acta. 2022;333:22–38. https://doi.org/10.1016/j.gca.2022.06.042

17. Orians K.J., Bruland K.W. The biogeochemistry of gallium in the Pacific Ocean. Geochim Cosmochim Acta. 1988;52:2955–2962. https://doi.org/10.1016/0016-7037(88)90163-6

18. Shiller A.M., Bairamadgi S., Santschi P.H. Dissolved gallium in rivers and estuaries: tracer of input and removal processes. Mar Chem. 2006;100:114–123. https://doi.org/10.1016/j.marchem.2005.11.001

19. Whitmore L.M., Cullen J.T., Lippiatt S.M. Distribution of dissolved gallium in the Arctic Ocean: tracer of Pacific inflow. Mar Chem. 2020;227:103891. https://doi.org/10.1016/j.marchem.2020.103891

20. Zhang J. Gallium isotope effect of Ga–Si complex solutions in water: theoretical study based on density functional theory. Water. 2024;16(12):1680. https://doi.org/10.3390/w16121680

21. Liu Y., Chen J., Yang J., Chen J., Hao Q., Guo J., et al. Gallium-based nano-liquid metals enabled antimicrobial mechanisms and biomedical applications. Nanoscale. 2025;17(24):14441–14457. https://doi.org/10.1039/D5NR00406C

22. Huang T., Huang S., Liu D., Zhu W., Wu Q., Chen L., et al. Recent advances and progress on the design, fabrication and biomedical applications of gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces. 2024;238:113888. https://doi.org/10.1016/j.colsurfb.2024.113888

23. Wang T., Zhao Y., Zhang L. Gallium in wastewater: sources, detection, and treatment technologies. J Hazard Mater. 2022;425:127960. https://doi.org/10.1016/j.jhazmat.2021.127960

24. Sun W., Qi M., Cheng S.-S., Li C., Dong B., Wang L., et al. Gallium and gallium compounds: new insights into the “Trojan horse” strategy in medical applications. Mater Des. 2023;227:111704. https://doi.org/10.1016/j.matdes.2023.111704

25. Chitambar C.R. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health. 2010;7(5):2337–2361. https://doi.org/10.3390/ijerph7052337

26. NIOSH. Criteria for a recommended standard: occupational exposure to gallium arsenide. DHHS (NIOSH) Publication No. 2016-128. Cincinnati: NIOSH; 2016.

27. ECHA. Gallium arsenide – classification & labelling (CLP). European Chemicals Agency; 2020.

28. White S.J.O., Shine J.P. Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies. Curr Environ Health Rep. 2016;3(4):459–467. https://doi.org/10.1007/s40572-016-0118-8

29. Bomhard E.M. The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide. Environ Toxicol Pharmacol. 2020;80:103437. https://doi.org/10.1016/j.etap.2020.103437

30. de Assis A.C.J., Pegoraro G.M., Duarte I.S. Evolution of gallium applications in medicine and microbiology: a chronology. Biometals. 2022;35:675–688. https://doi.org/10.1007/s10534-022-00406-4

31. Połedniok J., Orzeł J., Gałeczka J., Czoik R. A highly sensitive spectrophotometric method for gallium determination with chrome azurol S in the presence of mixed cationic–nonionic surfactants and its application in plant analysis. Commun Soil Sci Plant Anal. 2017;48(8):936–942. https://doi.org/10.1080/00103624.2017.1311907

32. Dzherayan T.G., Shkinev V.M., Reznik A.M., Mitronov A.N., Karandashev V.K. Extraction-photometric determination of gallium with phenylfluorone in alkaline carbonate solutions in the presence of polyethylene glycol. J Anal Chem. 2006;61:566–570. https://doi.org/10.1134/S1061934806060098

33. Pashadzhanov A., Bayramov S., Abbasova G., Agamalieva M., Mamedova Z. Extraction–atomic absorption determination of gallium(III) with 2-hydroxy-5-t-butylphenol-4'-methoxyazobenzene. J Mater Sci Chem Eng. 2020;8:24–30. https://doi.org/10.4236/msce.2020.89003

34. Kara D., Fisher A., Foulkes M., Hill S.J. Determination of gallium at trace levels using a spectrofluorimetric method in synthetic U–Ga and Ga–As solutions. Spectrochim Acta A Mol Biomol Spectrosc. 2010;75(1):361–365. https://doi.org/10.1016/j.saa.2009.10.041

35. Pysarevska S., Dubenska L. Advances in the electrochemical determination of gallium(III). Chem Met Alloys. 2018;11:34–41. https://doi.org/10.30970/cma11.0370

36. Bobojonov, K., Usmanova, K., Smanova, Z., Gafurova, D., & Abdullayeva, M. (2025). Analytical application of sorption–fluorescence methods for the determination of aluminium, beryllium, and lead in environmental samples. International Journal of Environmental Analytical Chemistry, 1–21. https://doi.org/10.1080/03067319.2025.2511983

37. Yakhshieva Z.Z., Usmanova Kh.U., Zhuraev Kh.B., Akhmadjonova Yo.T., Umarov F.A., Karabaeva G.B. Development of methods for the determination of aluminium in water. Journal of Survey in Fisheries Sciences. 2023;10(2S):3322–3337. Available at: https://sifisheriessciences.com/index.php/journal/issue/view/21

38. Bobojonov Kh.Sh., Usmanova Kh.U., Smanova Z.A. Galliy va alyuminiy ionlarini lyuminessent usulda aniqlashda qo‘llaniladigan organik reagentlarni immobilizlash [Immobilization of organic reagents for luminescent determination of gallium and aluminium ions]. FarDU ilmiy xabarlari – Sci J Fergana State Univ. 2024;30(4):44–49. https://doi.org/10.56292/SJFSU/vol30_iss4/a95

39. Х.У. Усманова, Х.Ш. Бобожонов, У.У. Рузметов, З.А. Сманова. Чувствительные слои оптических сенсоров для мониторинга объектов окружающей среды на тяжелые металлы // Узбекский химический журнал. – 2025. – №3. –С.144-158.

40. Langødegård M., Wibetoe G. Determination of gallium in soil by slurry-sampling GFAAS. Anal Bioanal Chem. 2002;373(8):820–826. https://doi.org/10.1007/s00216-002-1365-0

41. Yakimovich P.V., Alekseev A.V. Determination of gallium, germanium, arsenic and selenium in heat-resistant nickel alloys microalloyed with REM by ICP-MS. Trudy VIAM. 2015;(3). Available at: https://cyberleninka.ru/article/n/opredelenie-galliya-germaniya-myshyaka-i-selena-v-zharoprochnyh-nikelevyh-splavah-mikrolegirovannyh-rzm-metodom-isp-ms

42. Filatova D.G., Seregina I.F., Foteeva L.S., Pukhov V.V., Timerbaev A.R., Bolshov M.A. Determination of gallium originated from a gallium-based anticancer drug in human urine using ICP-MS. Anal Bioanal Chem. 2011;400(3):709–714. https://doi.org/10.1007/s00216-011-4791-z

43. Blokhin M.G., Zarubina N.V., Mikhailyk P.E. Inductively coupled plasma mass spectrometric measurement of gallium in ferromanganese crusts from the Sea of Japan. J Anal Chem. 2014;69:1237–1244. https://doi.org/10.1134/S1061934814130036

44. Vu D.M., Auxier II J.D., Judge E.J., Aldrich K.E., Gifford B.J., Saumon D., et al. A data analysis method to rapidly characterize gallium concentration in plutonium matrices using LIBS. Spectrochim Acta B. 2023;203:106650. https://doi.org/10.1016/j.sab.2023.106650

45. El-Fatah G.A., Magar H.S., Hassan R.Y.A., et al. A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb²⁺, Cd²⁺ and Hg²⁺ ions in real water samples. Sci Rep. 2022;12:20181. https://doi.org/10.1038/s41598-022-24558-y

46. Aljabri D.M., El-Bahy M.S., El-Sayed R., Debbabi K.F., Amin A.S., Mohamed N.M. An innovative eco-friendly optical sensor designed specifically to detect gallium ions in environmental samples. Sens Bio-Sens Res. 2024;46:100687. https://doi.org/10.1016/j.sbsr.2024.100687

47. Lucena R.B., Morales E., Gomez-Ariza J.L. Spectrophotometric determination of gallium in biological materials at nanogram levels with thiocarbohydrazone derivatives. Farmaco. 1994;49(4):291–295. PMID: 8049011.

48. J. Chem. Soc., Anal. Commun. Spectrophotometric determination of gallium with thiocarbohydrazone derivatives. J Chem Soc Anal Commun. 1992;70:761–764. https://doi.org/10.1039/JA9920700761

49. Koltsov V.B., Larionov N.M., Slesarev S.A., Barkinkhoeva T.A. Separation of gallium from a multicomponent eutectic during recycling of technological wastes. Izvestiya VUZov. Elektronika. 2016;(6). Available at: https://cyberleninka.ru/article/n/vydelenie-galliya-iz-mnogokomponentnoy-evtektiki-pri-utilizatsii-tehnologicheskih-othodov

50. Blayda I.A., Vasil’eva T.V., Slyusarenko L.I., Khitrich V.F. Behavior of germanium and gallium during processing of coal fly ash by chemical and microbiological methods. Izvestiya VUZov. Khimiya i Khim Tekhnol. 2014;(1). Available at: https://cyberleninka.ru/article/n/povedenie-germaniya-i-galliya-pri-pererabotke-zoly-ot-szhiganiya-ugley-himicheskimi-i-mikrobiologicheskimi-metodami

51. Qu Y., Rudnick E. Review on gallium in coal and coal waste materials: exploring strategies for hydrometallurgical metal recovery. Molecules. 2024;29(24):5919. https://doi.org/10.3390/molecules29245919

52. Lukisha T.V., Adeeva L.N., Borbat V.F. Kinetics of Ga(III) sorption from HCl solutions by chelating resin Purolite S-930. Vestnik OmGU. 2013;2(68). Available at: https://cyberleninka.ru/article/n/issledovanie-kinetiki-sorbtsii-ionov-galliya-iz-solyanokislyh-rastvorov-helatnoy-smoloy-purolite-s-930

53. Pechishcheva N.V., Korobitsyna A.D., Melchakova O.V. Features of gallium sorption on mechanochemically activated titanium dioxide. Trudy Kol’skogo nauchnogo tsentra RAN. 2020;3–4. Available at: https://cyberleninka.ru/article/n/osobennosti-sorbtsii-galliya-na-mehanoaktivirovannom-diokside-titana

54. Chai N., Gao L., Li S., Cao Y., Ma Z., Li L., Hu M. Insight into the gallium selectivity mechanism of in-situ ion-imprinted material in multi-ion systems. Miner Eng. 2023;194:108133. https://doi.org/10.1016/j.mineng.2023.108133

55. Pearton S.J., Ren F., Tadjer M., Kim J. Perspective: Ga₂O₃ for ultra-high power rectifiers and MOSFETs. J Appl Phys. 2018;124(22):220901. https://doi.org/10.1063/1.5062841

56. Higashiwaki M., Kamimura T. β-Ga₂O₃ power devices: status, prospects and future challenges. Semicond Sci Technol. 2024;39(4):043001. https://doi.org/10.1088/1361-6641/ad2f43

57. Ahmadi E., Oshima Y. Materials issues and devices of Ga₂O₃. J Appl Phys. 2019;126(16):160901. https://doi.org/10.1063/1.5115323

Published

2026-02-03

How to Cite

ГАЛЛИЙ: ЭКОЛОГИЧЕСКИЕ РИСКИ, МЕТОДЫ АНАЛИЗА И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ. (2026). Scientific Journal of the Fergana State University, 31(6). https://doi.org/10.56292/SJFSU/vol31_iss6/a%p