ROW DETERMINANT OF THE MATRIX OF THE N-TH ORDER OF MATRICES DEFINED OVER THE BODY OF QUATERNION NUMBERS AND ITS PROPERTIES
ROW DETERMINANT OF THE MATRIX OF THE N-TH ORDER OF MATRICES DEFINED OVER THE BODY OF QUATERNION ....
DOI:
https://doi.org/10.56292/SJFSU/vol31_iss4/a%25pKeywords:
quaternion number; quaternion matrix; row determinantAbstract
This paper studies the row determinant of square matrices defined over the skew field of quaternion numbers and its properties. The row determinant of a square matrix by the -row is defined as the algebraic sum of products of elements taken from each row of the square matrix, once. Each row determinant by the -row has different values and differs from the determinant of a commutative matrix. At the same time, some properties are preserved. These properties were proved using the definition of row determinants
References
Понизовский И. С. Об определителе матриц с элементами из некоторого кольца // Мат. сб. –1958. – Т. 45 (87), № 1. – С. 3–16.
Aslaksen H. Quaternionic determinants // Math. Intelligencer. – 1996.– Vol. 18, no. 3. – P. 57–65.
Гельфанд И. М., Ретах В. С. Детерминанты матриц над некоммутативными кольцами // Функц. анализ и его прил. – 1991.– Т. 25, № 2. – С. 13–35.
Гельфанд И. М., Ретах В. С. Теория некоммутативных детерминантов и характеристические функции графов // Функц. анализ и его прил. –1992. – Т. 26, № 4. –С. 33–45.
Chen L. Definition of determinant and Cramer solutions over quaternion field // Acta Math. Sinica (New Ser.). – 1991. – Vol. 7, no. 2. – P. 171–180.
Chen L. Inverse matrix and properties of double determinant over quaternion field // Sci. China, Ser. A. – 1991. – Vol. 34. – P. 528–540.
Cohen N., De Leo S. The quaternionic determinant // Electron. J. Linear Algebra. – 2000. – Vol. 7. – P. 100–111.
Кирчей И. И. Классическая присоединённая матрица для эрмитовой над телом // Мат. методы и физико-механические поля. – 2001. – Т. 44, № 3.– С. 33–48.
Published
Issue
Section
License
Copyright (c) 2025 Scientific journal of the Fergana State University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.