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N.S.Ikramova, M .T.Yunu salieva Solvability of a mixed pr obl em for a deg enerate sub-di ffusion equation i n a r ectang ular dom ai n 

Abstract 
In the present paper, a mixed boundary value problem for a degenerate sub-diffusion equation in a rectangular 

domain is studied. By applying the method of separation of variables, a spectral problem for a space-dependent ordinary 
differential equation is derived. The existence of eigenvalues and eigenfunctions of the resulting spectral problem is 
established using the theory of positive differential operators. The solution to the problem is constructed in the form of a 
Fourier series. The convergence of the obtained series is proved, and the uniqueness of the solution is established by 
exploiting the completeness of the system of eigenfunctions. 

Аннотация 
В настоящей работе исследуется смешанная краевая задача для вырожденного уравнения 

субдиффузии в прямоугольной области. С использованием метода разделения переменных получена 
спектральная задача для обыкновенного дифференциального уравнения, зависящего от пространственной 
переменной. Существование собственных значений и собственных функций соответствующей 
спектральной задачи доказано на основе теории положительных дифференциальных операторов. Решение 
задачи строится в виде ряда Фурье. Доказана сходимость полученного ряда, а также установлена 
единственность решения на основе полноты системы собственных функций. 

Annotatsiya 
Ushbu maqolada to‘g‘ri to‘rtburchak sohada buziladigan subdiffuziya tenglamasi uchun aralash chegaraviy masala 
o‘rganilgan. O‘zgaruvchilarni ajratish usuli yordamida fazoviy o‘zgaruvchiga bog‘liq bo‘lgan oddiy differensial tenglama 
uchun spektral masala hosil qilinadi. Hosil bo‘lgan spektral masalaning xos qiymatlari va xos funksiyalarining mavjudligi 
musbat differensial operatorlar nazariyasiga asoslanib isbotlangan. Masalaning yechimi Furye qatori ko‘rinishida 
qurilgan. Olingan qatorning yaqinlashuvchiligi isbotlangan hamda yechimning yagonaligi xos funksiyalar sistemasining 
to‘laligidan foydalanib asoslangan. 

 
Key words: fractional calculus, degenerate differential equation, mixed problem, Caputo fractional differential 

operator, spectral problem. 
Ключевые слова: дробное исчисление, вырожденное дифференциальное уравнение, смешанная 

задача, дробный дифференциальный оператор Капуто, спектральная задача. 
Kalit so‘zlar: kasr tartibli hisob, buziladigandifferensial tenglama, aralash masala, kasr tartibli Kaputo 

differensial operatori, spektral masala. 

 
INTRODUCTION 

Fractional partial differential equations have attracted considerable attention in recent years 
due to their ability to describe memory and hereditary effects inherent in many complex physical 
and biological processes. In particular, diffusion equations involving fractional-order time 
derivatives provide an adequate mathematical framework for modeling anomalous diffusion 
phenomena observed in heterogeneous and porous media, viscoelastic materials, heat conduction 
with memory, and transport processes in biological systems [1-3].  
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Among various definitions of fractional derivatives, the Caputo fractional derivative is 
especially convenient for physical applications, as it allows the formulation of initial conditions in 
terms of integer-order derivatives. 

In many realistic models, diffusion processes are influenced not only by temporal memory 
effects but also by spatial inhomogeneities. This leads naturally to diffusion equations with spatially 
variable coefficients, which may vanish or become unbounded on certain subsets of the domain. 
Such equations are commonly referred to as degenerate diffusion equations. The presence of 
degeneration significantly affects the qualitative properties of solutions, including regularity, well-
posedness, and the admissible forms of boundary conditions. Degenerate equations arise, for 
instance, in the mathematical modeling of heat conduction in materials with spatially varying 
conductivity, diffusion in porous or layered media, and vibration problems of elastic structures with 
nonuniform properties [4-6]. 

The analysis of degenerate partial differential equations with integer-order derivatives has a 
long history, and a variety of analytical techniques have been developed to study their solvability 
and spectral properties. However, the investigation of fractional diffusion equations with spatial 
degeneration remains relatively limited, especially in multidimensional settings and for mixed initial-
boundary value problems. In particular, the interplay between the order of the fractional derivative 
and the degree of spatial degeneration poses substantial analytical challenges. 

An important feature of space-degenerate equations is that the type and number of 
boundary conditions required for well-posedness depend essentially on the degree of 
degeneration. Unlike nondegenerate diffusion equations, where boundary conditions are 
prescribed uniformly along the boundary, degenerate problems may require fewer or different 
conditions on the degeneration set. A rigorous justification of such phenomena is crucial for both 
mathematical completeness and physical consistency of the models. 

The present paper is devoted to the study of a mixed initial-boundary value problem for a 
time-fractional diffusion equation with spatial degeneration in a rectangular domain. The equation 
involves a Caputo fractional derivative of order 0<α<1 with respect to time and a second-order 
spatial operator whose coefficient vanishes on a part of the boundary, creating a line of 
degeneration. Special attention is paid to the dependence of boundary conditions on the degree of 
degeneration. 

The analysis is based on the method of separation of variables, which leads to a weighted 
spectral problem associated with a degenerate differential operator. By employing variational 
techniques and the Friedrichs extension, we establish the existence of a discrete spectrum and 
construct a complete system of eigenfunctions. Using these eigenfunctions, the solution of the 
original problem is represented in the form of a Fourier series with coefficients expressed via 
Mittag-Leffler functions. Detailed estimates for the Fourier coefficients are derived to ensure 
convergence and justify term-by-term differentiation and integration. 

As a result, sufficient conditions are obtained for the existence and uniqueness of classical 
or weak solutions, depending on the degree of degeneration. The results demonstrate how spatial 
degeneration influences both the functional framework and the formulation of boundary conditions, 
thereby extending classical solvability theory to a new class of fractional degenerate diffusion 
equations. 

The structure of the paper is as follows. In Section 2, preliminary definitions and auxiliary 
results on fractional calculus and function spaces are presented. Section 3 is devoted to the 
analysis of boundary conditions depending on the degree of degeneration. In Section 4, the main 
mixed problem is formulated. Section 5 investigates the associated spectral problem and its 
properties. Section 6 contains estimates for Fourier coefficients and convergence results. Finally, 
Section 7 establishes the existence and uniqueness of solutions. 

  In a 

rectangular domain   such that   ,  : 0 1,  0x t x t T       , we consider the 

following equation 
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    ,  1, 0, ,t

u
u x f

x x
x t x t           

 (1) 

where ( , )t u x t  is the Caputo differential operator of   fractional order [7], , R    

such that    ,  0,1 ,20    and 1  , ( , )f x t  is a given function. 

 For equation (1), the line 0x   is the line of degeneration, and   is the degree of 
degeneration. So, the equation (1) can be considered space-degenerate partial differential 
equation. Our approach showed that the degree of degeneration   affects both the formulation 
and investigation of the problem. We will formulate and study a mixed problem for different 
degrees of degeneration in equation (1). 

2. PRELIMINARIES 
 In this section, we give the definitions and some properties of the fractional 

differential operators and some function spaces that will be used throughout the paper. 
  2.1. Caputo fractional differential operator and Mittag-Leffler functions 
Definition 2.1. [7] Caputo fractional derivative of order   of the function ( )f t  is defined 

by 

        1 ( )

0

1 ,
t m m

t Г m
f t t s f s ds




 


    (2) 

where 0,  1 ,t m m     and 1,2,...;m   ( )Г z  is the Euler’s gamma-function. 

 Definition 2.2. [8] The two-parameter Mittag-Leffler function , ( )E t   is defined as 

follows 

 , ( )0
( ) , , 0, .

k

Г kk

t
E t t   

 



      

 Lemma 2.1. [7] Consider the following Cauchy problem 

 
     

   
, 0,

, 0,..., 1,k

t u t u t f t t

u t uk k m

    


  
  (3) 

where , ,ku R   such that 1 , .m m m N     Then the solution of (3) can be 

written as follows: 

 
1

1
, 1 ,

0 0

( ) ( ) ( ) ( ( ) ) ( ) .
tm

k
k k

k

u t u t E t t s E t s f s ds  
   







      (4) 

 We have the following lemma for two-parameter Mittag-Leffler functions [8]: 
 Lemma 2.2. If 2,   is any arbitrary real number,   is such that 

 / 2 min ,      and C is a real constant, then 

  , ( ) , arg( ) , 0.
1

C
E z C z z

z       


  

2.2. Function spaces 

Let  0,t T  and that, for every t , or at least for a.e. t , the function ( , )u t  belongs to a 

separable Hilbert space (V e.g. 
2( )L   or 

1( ))H   Then, one can consider u  as a function of 

the real variable t  with values into V : 

  : 0, .u T V   
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The set   0,  ;   C T V  of continuous functions  : 0,u T V , equipped with the norm 

   0, ; 0
( , ) max ( , )

C T V Vt T
u t u t

 
    (5) 

forms a Banach space. 
3. DEPENDENCE OF THE BOUNDARY CONDITIONS ON THE DEGREE OF 

DEGENERATION 
In this section, we study the dependence of the boundary conditions on the degree of 

degeneration. For this aim, let us consider the following equation 

 ( ) ( ),
d d

A x f x
dx dx

      (6) 

where 
2( ) (0,1)f x L  is a given function, R   such that 0 2   and 1  . 

The domain ( )D A  of the operator A  consists of functions satisfying the following 

requirements: 

)a   ( ) 0,1x C  , the function ( )x x  has a continuous derivative on  0,1   

and    ( ) 0,1 ;
d

x x AC
dx

   

)b  
2(0,1);A L  

)c  satisfies the boundary condition  

 (1) 0.   (7) 

Let us determine the conditions that need to be the imposed at 0x   for a unique solution 
to the given problem {(6),(7)} to exist. 

For this aim, let us consider the following scalar product 

 
1

0

, .
d d d d

x x dx
dx dx dx dx

                 
 

Hence, applying the rule of integration by parts, we obtain 

 

1 21

00

, .
d d d d

x x x dx
dx dx dx dx

                             (8) 

We will define the conditions under which the first term on the right-hand side of (8) 
vanishes. 

Let 1 2  . We will show that for these values of  , the following equality 

 
0

lim ( ) 0
x

x x


   (9) 

is valid. 
 We assume that converse, i.e. there exists some non-zero constant b  such that 

 
0

lim ( ) .
x

x x b


   

For instance, let 0b  . Then for 0 p b   and sufficiently small x  the following 

inequality holds: 

( )
p

x
x

  . 

Due to the last inequality the following integral 
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0

( )
x

x dx  

is divergent, contradicting the continuity of ( )x . From this contradiction, we get the proof 

of equality (9). 
 Thus, we proved that if 1 2   we do not need any conditions at 0x   for 

vanishing the first term on the right-hand side of (8). 
 Now, we consider the case 0 1  . In this case, we have 

 
0

lim ( ) 0.
x

x x


   

Thus, we proved that for any function ( )D A , in case 0 1  , the condition 

(0) 0   is a necessary condition for vanishing the first term on the right-hand side of (8) and in 

case 1  , we do not need any conditions at 0x  . 
4. MAIN PROBLEM OUTLINE AND EXPLORATION 

For equation (1), we study the following boundary value problem: 
Problem 4.1. Find a solution in the domain   of the equation (1) satisfying the following 

initial  
 ( ,0) ( ), 0 1u x x x   , (10) 

and the boundary conditions: 

  (0, )
0; 0, ; (1, ) 0, 0 ,

u t
u t t T

x



  
     


 (11) 

where   is a given function,    denotes the integer part of  . 

First, we will examine the form of the boundary condition (11) for different values of . 

Let (0,1)  . Then, the condition (11) takes the form  

 (0, ) 0, (1, ) 0, 0 .u t u t t T     (12) 

For the values of (1,2)  , the condition (11) has the form 

 (1, ) 0, 0 ,u t t T    (13) 

so we do not need any conditions on the line 0x  . 
Therefore, the condition (11) encompasses the conditions (12), (13). 

5. SPECTRAL PROBLEM 
 For studying problem 4.1 we use the method of separation variables, i.e. we will 

seek the solution of the equation (1) satisfying the boundary conditions (11) in the form  
 ( , ) ( ) ( ),u x t T t x  

where ( )T t  and ( )x  are unknown functions. 

Then, we obtain the following spectral problem for ( ) :x  

 ( ( )) ( ),x x x     (14) 

 ( ) (0) 0, 0, [ ], (1) 0.        (15) 

For proving the existence of the eigenvalues and eigenfunctions of the spectral problem 
{(14),(15)} we consider the following operator 

 ( )A x     

with the domain ( )D A  that consists of function with the following properties: 

1) [0,1];C  
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2) ( ) [0,1]x x C   and ( ( )) [0,1],x x AC   
2(0,1);A L  

3) 
( ) (0) 0,     0, [ ],      (1) 0  . 

We denote by 
1

2,W 
  the closure of the set ( )D A  with the following norm 

 

1
2 2 2

1
2,

0

( ) ( ) .
W

x x x dx


       

For proving the existence of the eigenfunctions and eigenvalues of the spectral problem 
{(14),(15)} we use the variational method [9]. 

To do this we show the positive definiteness of the operator A . 
Theorem 5.1. Let 0 2   and let 1  . Then the operator A  is positive definite in 

2 (0,1)L .  

Proof. First, we will prove that the operator A  is a symmetric. Since the domain of the 
definition of the operator contains finite functions on (0,1) , the domain of the operator ( )D A  is 

dense in 
2 (0,1)L . 

 Now, for any functions , ( )D A  , we consider the following scalar product 

 

1

0

( , ) ( ) .A x dx       

 Applying the rule of integration by parts, and considering the conditions (15) from 
the last, we obtain 

 

1

0

( , ) .A x dx       (16) 

 Hence, by applying integration by parts once again and taking (15) into account, we 
get 

 

1

0

( , ) ( , )A x dx A        . (17) 

 Thus, we obtain the equality ( , ) ( , )A A    , from which it follows that the 

operator A  is symmetric. 
 Now, we shall show that for any ( )D A , there exists a positive constant ,  and 

the operator A  satisfies the following positive definiteness inequality 

 
2
2 (0,1)

( , ) .
L

A     (18) 

 From the equality (17), in case   , we obtain 

 

1
2

0

( , ) ( ) .A x x dx     (19) 

 Since (1) 0  , we can write the following equality 

 

1

0

( ) ( )x t dt   . 

Using this equality, we have 
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2 21 1 1 1 1
2

0 0 0

1
( ) ( ) ( )

x x

x dx t dt dx t t dt dx
t




  

   
     

   
     . 

 Hence, applying the Cauchy-Schwarz inequality, we obtain 

  
1 1 1 1

22

0 0

( ) ( )
x x

x dx t dt t t dt    
   

  
      

  
1 1 1

2

0 0

( ) .
x

t dt dx t t dt     
    

   
    (20) 

 From the last, we have 

 

1 1 1 1
2 2

0 0 0

( ) ( ) .
x

x dx x x dx t dtdx        

 Since 1  , we have 

 
11 1 1 1

0.
1 (1 )(2 ) 20

t dtdx
x


   

         
 

Then, introducing 
 2    
we come the proof of the inequality (18). 
Thus, the proof of Theorem 5.1 is complete. 
 Now, we consider the Friedrichs extension of the operator A , and denote this 

extension by the same notation, A . 
Theorem 5.2. Let 0 2   and 1  . Then, the operator A  has a discrete spectrum. 

Proof. Since, the operator A  is positive definite, we introduce the energetic space AH  of 

the operator A  with the following norm 

 

1
2 2

0

( ) .
AH

x x dx    

 It is easy to show that AH , as a set of functions, coincides with the space 
1

2, (0,1)W 
 . 

Moreover, the norms of these two spaces are equivalent. 
 Let M  be a set of functions   for which the norm in the energetic space AH  is 

bounded, i.e. 
AH

c   , where c  is a finite constant number. 

 Then, from (17) and (18) it follows that 

 
11 2 2

2
2, 0

( ) ( )
W

x x x dx const


        . 

 Then, by the Kondrashov embedding theorems for weighted classes [10], the set 
M  is compact in the space into which it is embedded, specifically: 

a) in the space of continuous functions if 0 1  ; 

b) in the space 
qL  if 1  , where q R  such that 2 / ( 1)q   . 

 These statements show that the set M  is compact in the space 
2 (0,1)L . Then, 

based on Theorem 3 (§40) in [9], we conclude that the spectrum of the operator A  is discrete, i.e. 
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the system of eigenfunctions of the operator A  is a complete orthonormal system in 
2 (0,1)L  and 

orthogonal in AH : 

 

1

0

1, ;
( ) ( )

0, ;i j

i j
x x dx

i j
 

 



  (21) 

 

1

0

, ;
( ) ( )

0, ;

i jix x x dxi j i j

 
 

   


   (22) 

where   1n n
 


 and   1n n

 


 are the eigenfunctions and eigenvalues of the spectral problem 

{(21),(22)}, respectively. 
6. THE ORDER OF FOURIER COEFFICIENTS 

In this section, we establish the convergence of some series that will be used throughout 
the paper. 

 Let   1n n
 


 and   1n n

 


 be the eigenfunctions and eigenvalues of the spectral 

problem {(14),(15)}. 

 Lemma 6.1. Let 
1

2, (0,1)f W   . Then, the following inequality holds: 

 

1
2 2

1 0

[ ( )]n n
n

f x f x dx




   (23) 

from which follows the convergence of the series on the left-hand side of (23), where 
1

0

( ) ( ) .n nf f x x dx   

Proof. By the definition of generalized eigenfunctions for any 
1

2, (0,1)f W    the following 

equality holds 

 

1

0

( ) ( )n n nx x f x dx f    . (24) 

Let us consider the following non-negative expression: 

 

21

10

( ) ( ) 0.
n

i i
i

x f x f x dx 


    
 

  

From the last, we obtain 

 

1 1
2

10 0

( ) 2 ( ) ( )
n

n n
i

x f x dx f x f x x dx  


      

 

1 1
2

1 , 10 0

( ) 2 ( ) ( ) 0.
n n

n n i j i j
i i j

i j

f x x dx f f x x x dx   
 



        

Considering the last equality and (22), (24), we have  

 

1
2 2

1 0

[ ( )] .
n

i i
i

f x f x dx


   

 Hence, passing to the limit as n  we come to the inequality (23). 
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 Let us introduce the following notation  

 ( ( ...( )...))m

m times

A f A A A Af


 . 

 Lemma 6.2. Let the following conditions be satisfied 

(1)  for all even m numbers 
12

2,, , , (0,1);
m

f Af A f W    

(2)  for all odd m numbers 

1 1
1 22 2

2,, , , (0,1), (0,1)
m m

f Af A f W A f L

 

  . 

Then, the following Bessel-type inequalities hold true: 

 

2

1
2

1 2

01 2

1 21
0

[( ) ] , ,

[ ] , .

m

m

m
n n

n

A f dx for evenm
f

A f dx for odd m









 
 







 (25) 

Proof. Assume that m is even natural number. Then, applying the rule of integration by 
parts twice, from (24) we have  

 ( , ) ( , ).n n n n nAf f f      (26) 

Replacing  f  by Af  in (26), we obtain 

 
2 2( , ) ( , ) .n n n n nA f Af f      

 Similarly, one can show that the following equality is valid: 

 2 2( , )
m m

n n nA f f  . (27) 

 Equation (27) shows that 2

m

n nf  is the Fourier coefficient of the function 2

m

A f  for 

the system of the eigenfunctions of the spectral problem {(14) (15)}. 

 Since, 
12

2, (0,1)
m

A f W    by applying Lemma 6.2, we have 

 2

1
2 1 2 2

1 1 0

[( ) ] .
mm m

n n n n n
n n

f f x A f dx  
 



 

       

 Thus, we have proved Lemma 6.2 for even m. 
 Now, we consider the case where m is odd. 
 In this case, from (27), we have 

 
1 1

2 2, .
m m

n n nA f f 
  

 
 

  

 Under the assumptions of Lemma 6.2, we have 

1
22 (0,1).

m

A f L


  Then, applying 

Bessel’s inequality, we obtain 

  
1

2

21
21 1 2

1 1 0

, .
m

m m
n n n

n n

A f f A f dx 
 

 

 

 
   

 
      

The proof of Lemma 6.2 is complete. 

Lemma 6.3 Let      1 2
2,0, , (0,1) , 0, , (0,1) .f C T W Af C T L   Then the following 

series 

 
2 2

1

( )n n
n

f t



    
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converges absolutely and uniformly in  0, .T  

Proof. By employing Parseval’s equality for the function ( , ),Af x t  we have 

  
1

22 2

1 0

( ) ( , ) .n n
n

f t Af x t dx




    

Since 
2( , ) ([0, ], (0,1))Af x t C T L based on Dini’s theorem, we have the proof of Lemma 

6.3. 

Lemma 6.4. Let 
1

2,( , ), ( , ) ([0, ], (0,1)).f x t Af x t C T W    Then the following series 

 
3 2

1

( )n n
n

f t



    

converges absolutely and uniformly in  0, .T  

Proof. Since ( , ) ( )n n nAf f t   and 
1

2,( , ) ([0, ], (0,1)),Af x t C T W    by applying 

Lemma 6.1, we have  

 

1
3 2 2

1 0

( ) [( ) ] .n n
n

f t x Af dx




      

 Since 
2

1,( , ) ([0, ], (0,1))Af x t C T W    based on Dini’s theorem, we have the proof 

of Lemma 6.4. 
7. EXISTENCE OF THE SOLUTION TO THE PROBLEM. 

In this section, we will prove the existence and the uniqueness of the solution to the 
Problem 4.1. 

 We consider two cases. 
 Case 1. 0 1  . 

 Case 2. 1 2  . 
First, we consider Case 1. 

 Let   1k k
 


 and   1k k

 


 be the eigenfunctions and eigenvalues of the spectral 

problem {(14),(15)}. We will seek a solution to the problem in the following form  

 
1

( , ) ( ) ( )k k
k

u x t u t x




 , (28) 

where 2 (0,1)
( ) ( , )k k L

u t u  for k . 

 Substituting (28) into equation (1) and introducing 2 (0,1)
( , ) ( ),k kL
f f t   from (1), 

we obtain  

 ( ) ( ) ( ), , (0, ).t k k k ku t u t f t k t T       (29) 

 Moreover, from the initial condition (10), we have  
 (0) , ,k ku k   (30) 

  
where 2 (0,1)

( , ) .k k L
     

 Using Lemma 2.1, it is easy to see that the solution to the problem {(29),(30)} has 
the form  
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 1
,1 ,

0

( ) ( ) ( ) [ ( ) ] ( ) .
t

k k k k ku t E t t s E t s f s ds  
           (31) 

Substituting (31) into (28), we obtain  

     ,1
1

, k k
k

u x t E t 




     

        1

,

0

.
t

k k kt s E t s f s ds x
 

           
  (32) 

Applying the rule of integrating by parts, we rewrite (32) in the form  

         ,1 , 1
1

, 0k k k k
k

u x t E t E t f 
    






       

        , 1

0

.
t

k k kt s E t z f z dz x
 

   

        
  (33) 

 Theorem 7.1. Let the following conditions be satisfied 
1) 0 1  ; 

2)  1
2,, 0,1A W      

3)  1
2,, 0,1f Af W    with respect to ;x  

4)     1
2,0, , 0,1 .

f
C T W

t 




  

 Then, the function  ,u x t  defined by (33) will be the classical solution to problem. 

 Proof. To prove Theorem 7.1, we will show the continuity of the functions t u
  and 

u
x

x x
  

   
 in .  Formally differentiating (33) and considering (14), we obtain 

  
1

( ) ,k k k
k

u
x u t x

x x
  





      
   

or we can write the last, in the following form  

       ,1 , 1
1

0k k k k k
k

Au E t E t f 
     






       

         , 1

0

.
t

k k kt s E t z f z dz x
 

   


    


  (34) 

From (34), we obtain  

      2 3
,1 , 1

1

0
A

k k k k kH
k

Au E t E t f 
     






       

      
2

, 1

0

t

k kt s E t z f z dz
 

  

        
  (35) 

Hence, applying    2 2 2 23 ,a b c a b c      we have  
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      2 3 2 2 3 2 2
,1 , 1

1 1

3 3 0
A

k k k k k kH
k k

Au E t f E t 
      

 


 

       

      
2

3
, 1

1 0

3 .
t

k k k
k

t s E t z f z dz
 

  





         
    

Applying Lemma 2.2 and Cauchy-Schwarz inequality, we have 

      
2

3
, 1

0

t

k k kt s E t z f z dz
 

  

         
  

  
 

 
2

3

0 1

t

k k

k

C
t s f z dz

t z






 
      

  

    
2

2 2 2

0 0 0

t t t

k k k kC f z dz C dz f z dz 
 

    
 
    

  2 2

0

.
T

k kC T f z dz    

 Considering the last inequality and boundedness of the Mittag-Leffler function, we 
obtain  

    2 3 2 3 2 2
1 2 3

1 1 1 0

0 ,
A

T

k k k k k kH
k k k

Au C C f C f s ds   
  

  

       (36) 

where 1 2,C C  and 3C  are the constants not depend on k  

 The convergence of the two series on the right-hand side of (36) follows from 
Lemma 6.2, and the convergence of the third series follows from Lemma 6.4, with the subsequent 
application of the theorem on term-by-term integration of uniformly converging series. 

 Consequently, we have obtained that 

 
2

AH
Au const  

from which by Kondrashov embedding theorem for weighted classes [10], we have 

 0,1 .Au C  The continuity of Au  with respect to t  follows from the uniform convergence of the 

series  

  3 2

1
k k

k

u t



   

in  0, .T  Thus,  .Au C   

 Theorem 7.2. Let the following conditions be satisfied: 
1) 1 2   

2) 1 2
2, (0,1), (0,1);W A L    

3)          1 2
2 ,0, ; 0,1 , 0, , 0,1f C T W Af C T L   

4)     1
2,0, , 0,1 .

f
C T W

t 





  
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 Then, the function  ,u x t  defined by (32) will be a function such that 

    20, , 0,1Au C T L  and     20, , 0,1 .u C T L
t
   

 Proof. Using (32), we have  

 
   2

2 2 2

0,1
1

.k kL
k

A u t




  

It is easy to verify that the following estimate holds true: 

       2

2 2 2 2 2 2 2
4 5 60,1

1 1 1 0

0 ,
T

k k k k k kL
k k k

A C C f C f s ds   
  

  

       

where 4 5,C C  and 6C  are constants not depend on k . 

 The convergence of the two series follows from the conditions Theorem 7.2 and 
Lemmas 6.2 and 6.3. Additionally, the convergence of the third series follows from Lemma 6.3. 

 The uniqueness of the solution can be proved using the completeness property of 

the system of eigenfunctions   
1k k

x



 in 

2(0,1).L  
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