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Abstract

In the present paper, a mixed boundary value problem for a degenerate sub-diffusion equation in a rectangular
domain is studied. By applying the method of separation of variables, a spectral problem for a space-dependent ordinary
differential equation is derived. The existence of eigenvalues and eigenfunctions of the resulting spectral problem is
established using the theory of positive differential operators. The solution to the problem is constructed in the form of a
Fourier series. The convergence of the obtained series is proved, and the uniqueness of the solution is established by
exploiting the completeness of the system of eigenfunctions.

AHHOMauyus

B Hacmoswel pabome uccnedyemcsi cMmewaHHasi Kpaegasi 3adada Onsi 6bIpOXOEHHO20 ypasHEeHUs
cybouppysuu 8 npsimoyeonbHol obnacmu. C ucrnonb3ogaHueM memooda pas0esieHuUss NMePeMeHHbIX [oJlyYeHa
criekmparnbHasi 3adada 05151 06bIKHOBEHHO20 OughhepeHyuanbHO20 ypasHEeHUSs, 3a8ucsau,e20 om MpocmpaHCcmeeHHoU
nepemeHHol. CywiecmeogaHue CcobCcmeeHHbIX 3Ha4yeHuUlli U cobcmeeHHbIX QyHKUUlU  coomeemcmeyrouleli
criekmparnbHoU 3adayu doka3aHO Ha OCHOBE meopuu MoIoKUMernbHbIX dugghepeHyuanbHbIX ornepamopos. PeweHue
3al0ayu cmpoumcsi 8 eude psda @ypbe. [JokasaHa cxoOuMOCMb [Oy4eHHO20 psida, a makxe ycmaHoereHa
€0UHCMBEHHOCMb PEUEHUSs Ha OCHOBE MOTHOMbI cucmeMbl CO6CMBEHHbIX (hYHKUUU.

Annotatsiya

Ushbu maqolada to‘g'ri to‘rtburchak sohada buziladigan subdiffuziya tenglamasi uchun aralash chegaraviy masala
o‘rganilgan. O‘zgaruvchilarni ajratish usuli yordamida fazoviy o‘zgaruvchiga bog'liq bo‘lgan oddiy differensial tenglama
uchun spektral masala hosil qgilinadi. Hosil bo‘lgan spektral masalaning xos qiymatlari va xos funksiyalarining mavjudligi
musbat differensial operatorlar nazariyasiga asoslanib isbotlangan. Masalaning yechimi Furye qatori ko'rinishida
qurilgan. Olingan qatorning yaqinlashuvchiligi isbotlangan hamda yechimning yagonaligi xos funksiyalar sistemasining
to'laligidan foydalanib asoslangan.

Key words: fractional calculus, degenerate differential equation, mixed problem, Caputo fractional differential
operator, spectral problem.

Knroyeeble cnoea: OpobHoe ucyucrieHue, 8bIpox0OeHHoe OugghepeHyuanbHOe ypasHeHue, CMelwaHHasi
3adaya, 0pobHbIl dughchepeHyuanbHbIl onepamop Kanymo, cnekmparsbHas 3adayva.

Kalit so‘zlar: kasr tartibli hisob, buziladigandifferensial tenglama, aralash masala, kasr ftartibli Kaputo
differensial operatori, spektral masala.

INTRODUCTION
Fractional partial differential equations have attracted considerable attention in recent years
due to their ability to describe memory and hereditary effects inherent in many complex physical
and biological processes. In particular, diffusion equations involving fractional-order time
derivatives provide an adequate mathematical framework for modeling anomalous diffusion
phenomena observed in heterogeneous and porous media, viscoelastic materials, heat conduction
with memory, and transport processes in biological systems [1-3].
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Among various definitions of fractional derivatives, the Caputo fractional derivative is
especially convenient for physical applications, as it allows the formulation of initial conditions in
terms of integer-order derivatives.

In many realistic models, diffusion processes are influenced not only by temporal memory
effects but also by spatial inhomogeneities. This leads naturally to diffusion equations with spatially
variable coefficients, which may vanish or become unbounded on certain subsets of the domain.
Such equations are commonly referred to as degenerate diffusion equations. The presence of
degeneration significantly affects the qualitative properties of solutions, including regularity, well-
posedness, and the admissible forms of boundary conditions. Degenerate equations arise, for
instance, in the mathematical modeling of heat conduction in materials with spatially varying
conductivity, diffusion in porous or layered media, and vibration problems of elastic structures with
nonuniform properties [4-6].

The analysis of degenerate partial differential equations with integer-order derivatives has a
long history, and a variety of analytical techniques have been developed to study their solvability
and spectral properties. However, the investigation of fractional diffusion equations with spatial
degeneration remains relatively limited, especially in multidimensional settings and for mixed initial-
boundary value problems. In particular, the interplay between the order of the fractional derivative
and the degree of spatial degeneration poses substantial analytical challenges.

An important feature of space-degenerate equations is that the type and number of
boundary conditions required for well-posedness depend essentially on the degree of
degeneration. Unlike nondegenerate diffusion equations, where boundary conditions are
prescribed uniformly along the boundary, degenerate problems may require fewer or different
conditions on the degeneration set. A rigorous justification of such phenomena is crucial for both
mathematical completeness and physical consistency of the models.

The present paper is devoted to the study of a mixed initial-boundary value problem for a
time-fractional diffusion equation with spatial degeneration in a rectangular domain. The equation
involves a Caputo fractional derivative of order 0<a<1 with respect to time and a second-order
spatial operator whose coefficient vanishes on a part of the boundary, creating a line of
degeneration. Special attention is paid to the dependence of boundary conditions on the degree of
degeneration.

The analysis is based on the method of separation of variables, which leads to a weighted
spectral problem associated with a degenerate differential operator. By employing variational
techniques and the Friedrichs extension, we establish the existence of a discrete spectrum and
construct a complete system of eigenfunctions. Using these eigenfunctions, the solution of the
original problem is represented in the form of a Fourier series with coefficients expressed via
Mittag-Leffler functions. Detailed estimates for the Fourier coefficients are derived to ensure
convergence and justify term-by-term differentiation and integration.

As a result, sufficient conditions are obtained for the existence and uniqueness of classical
or weak solutions, depending on the degree of degeneration. The results demonstrate how spatial
degeneration influences both the functional framework and the formulation of boundary conditions,
thereby extending classical solvability theory to a new class of fractional degenerate diffusion
equations.

The structure of the paper is as follows. In Section 2, preliminary definitions and auxiliary
results on fractional calculus and function spaces are presented. Section 3 is devoted to the
analysis of boundary conditions depending on the degree of degeneration. In Section 4, the main
mixed problem is formulated. Section 5 investigates the associated spectral problem and its
properties. Section 6 contains estimates for Fourier coefficients and convergence results. Finally,
Section 7 establishes the existence and uniqueness of solutions.

In a

rectangular domain 2 such that Q= {(x, t) 0<x<l1, 0<t<T< oo}, we consider the
following equation

| 2025/Ne6 13 l
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Gf‘u(x, t)—%(xﬁ%):f(x, t), O<acx<l, (1)

where 07 u(x,t) is the Caputo differential operator of ¢ fractional order [7], &, € R
such that & € (0,1), pe (0,2) and f#1, f(x,t) is a given function.

For equation (1), the line x =0 is the line of degeneration, and ,B is the degree of
degeneration. So, the equation (1) can be considered space-degenerate partial differential
equation. Our approach showed that the degree of degeneration ,B affects both the formulation
and investigation of the problem. We will formulate and study a mixed problem for different
degrees of degeneration in equation (1).

2. PRELIMINARIES

In this section, we give the definitions and some properties of the fractional
differential operators and some function spaces that will be used throughout the paper.

2.1. Caputo fractional differential operator and Mittag-Leffler functions

Definition 2.1. [7] Caputo fractional derivative of order a of the function f(t) is defined

by
t
8;"f(zf)=r(mlﬂ){(r—s)’”_"‘_1 £ (s)ds, 2)
where t >0, m—1<a<m, and m=1,2,...; I'(z) isthe Euler's gamma-function.
Definition 2.2. [8] The two-parameter Mittag-Leffler function E @ (t) is defined as
follows
+oo tk
ﬁ(t)— > T T@hiB) a, >0, ‘t‘<oo.

Lemma 2.1. [7] Cons:der the following Cauchy problem
O%u(t)—Au(t)= f(t), t>0,
u® (t) =uk, k=0,..., m—1,

where o, u, ,A € R such that m—1<a <m, me N. Then the solution of (3) can be
written as follows:

(3)

m—1

u(t)= 2 Ep o (B1°) ¥ j (t=5)"E, (At =9)") [ (s)ds. )

We have the following lemma for two -parameter Mittag-Leffler functions [8]:
Lemma 2.2. If a<2, ﬂ is any arbitrary real number, [l is such that

a2 < < min{ﬁ,ﬂa} and C is a real constant, then

‘ ﬁ(z)‘ ‘ <C, (u<larg(2)|<7),

2.2. Function spaces
Let t € [O,T] and that, for every ¢, or at least for a.e. ¢, the function u(-,¢) belongs to a

separable Hilbert space V(e.g. L*(Q) or H'(€)) Then, one can consider u as a function of
the real variable ¢ with values into V' :

u:[0,T]>V.

| 14 2025/Ne6 l
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The set C([O, T]; V ) of continuous functions u :[O,T] — V', equipped with the norm

Hu("t)Hc([o,T];V) =max ‘u("t)HV (5)

0<t<T

forms a Banach space.
3. DEPENDENCE OF THE BOUNDARY CONDITIONS ON THE DEGREE OF
DEGENERATION
In this section, we study the dependence of the boundary conditions on the degree of
degeneration. For this aim, let us consider the following equation

d dv
Av=——((" ") = , 6
v dx(x dx) f(x) (6)

where f(x) e L’(0,1) is a given function, B € R suchthat 0< S<2 and f#1.

The domain D(A) of the operator A consists of functions satisfying the following
requirements:

a) v(x)e C[O,l] , the function x”0’(x) has a continuous derivative on [0,1]

and %(xﬂu’(x)) e AC[O,I];
b) Av e L*(0,1);

c) satisfies the boundary condition
v(1)=0. (7)
Let us determine the conditions that need to be the imposed at x =0 for a unique solution

to the given problem {(6),(7)} to exist.
For this aim, let us consider the following scalar product

1
) ),
dx dx odx dx

Hence, applying the rule of integration by parts, we obtain

1 1 2
—i(xﬂ @j,u =—U(Xﬂ @j +'[xﬁ [@j dx. (8)
dx dx dx )|, % dx

We will define the conditions under which the first term on the right-hand side of (8)
vanishes.

Let 1 < f# < 2. We will show that for these values of /3, the following equality
limx”v'(x)=0 (9)
x—0

is valid.
We assume that converse, i.e. there exists some non-zero constant b such that
limx”v'(x) = b.
x—0
For instance, let b>0. Then for 0< p< b and sufficiently small x the following
inequality holds:

' P
L(X)>—.
(>4

Due to the last inequality the following integral

| 2025/Ne6 15 l
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jfu'(x)dx

is divergent, contradicting the continuity of U(x). From this contradiction, we get the proof
of equality (9).
Thus, we proved that if 1< <2 we do not need any conditions at x =0 for
vanishing the first term on the right-hand side of (8).
Now, we consider the case 0 < f# <1. In this case, we have

limx”v'(x) # 0.
x—0
Thus, we proved that for any function v € D(A), in case 0< <1, the condition

0(0) =0 is a necessary condition for vanishing the first term on the right-hand side of (8) and in

case ,B >1, we do not need any conditions at x = 0.

4. MAIN PROBLEM OUTLINE AND EXPLORATION
For equation (1), we study the following boundary value problem:

Problem 4.1. Find a solution in the domain {2 of the equation (1) satisfying the following

initial
u(x,0)=p(x), 0<x<1, (10)
and the boundary conditions:
%:o; v=0,—[B]; u(l,)=0, 0<¢<T, (11)
X

where @ is a given function, [ﬂ] denotes the integer part of [3.

First, we will examine the form of the boundary condition (11) for different values of,B.
Let € (0,1). Then, the condition (11) takes the form

u(0,6)=0, u(l,t)=0, 0<¢<T. (12)
For the values of [ €(1,2), the condition (11) has the form
u(l,r)=0, 0<¢t<T, (13)

so we do not need any conditions on the line x =0.
Therefore, the condition (11) encompasses the conditions (12), (13).
5. SPECTRAL PROBLEM
For studying problem 4.1 we use the method of separation variables, i.e. we will
seek the solution of the equation (1) satisfying the boundary conditions (11) in the form

u(x,0) =T (Hv(x),
where T'(¢) and v(x) are unknown functions.
Then, we obtain the following spectral problem for v(x):

~(x"V'(x)) = Av(x), (14)
U(”)(O):O, H :09_[18]7 U(l) =0. (15)

For proving the existence of the eigenvalues and eigenfunctions of the spectral problem
{(14),(15)} we consider the following operator

Av=—(x"v")
with the domain D(A4) that consists of function with the following properties:

1) ve C[0,1];

| 16 2025/Ne6 l
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2) x"V'(x) € C[0,1] and (x”V'(x))' € AC[0,1], Ave L*(0,1);
3) v™(0)=0, w=0,—[B], v(1)=0.
We denote by W;ﬂ the closure of the set D(A) with the following norm

1
HUH;ZIﬂ = [[©* (@) + x " (x) .
| 0

For proving the existence of the eigenfunctions and eigenvalues of the spectral problem
{(14),(15)} we use the variational method [9].

To do this we show the positive definiteness of the operator A .

Theorem 5.1. Let 0 < <2 and let f#1. Then the operator A is positive definite in
7(0,1).

Proof. First, we will prove that the operator 4 is a symmetric. Since the domain of the
definition of the operator contains finite functions on (0,1), the domain of the operator D(A4) is
dense in L*(0,1).

Now, for any functions v, € D(A), we consider the following scalar product

(Av,0) = [ (") wdsx.

Applying the rule of integration by parts, and considering the conditions (15) from

the last, we obtain
1

(Av,w) = Ixﬂ U'a'dx. (16)
0

Hence, by applying integration by parts once again and taking (15) into account, we
get

1
(Av, ) = ~[)Cﬂa)'u'dx = (v, Aw). (17)
0

Thus, we obtain the equality (Av,w)= (v, A®), from which it follows that the

operator A is symmetric.
Now, we shall show that for any U € D(A), there exists a positive constant 7, and

the operator A satisfies the following positive definiteness inequality

(Av,v) > 7/”0”2

2"
From the equality (17), in case @ = U, we obtain

(18)

1
(Av,v) = j X0 (x)dx. (19)
0
Since U(1) =0, we can write the following equality

v(x)= —j v'(t)dt .

Using this equality, we have

| 2025/Ne6 17 l
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1 11 2

[orGodx = | ( [ U'(t)dtj dx = [ [— \/Tﬂu'(z)dz] dx.
0 0\ x \/7

Hence, applying the Cauchy-Schwarz inequality, we obtain

juz(x)dx < j[irﬁdrj“zﬁ [VO] dt) <
< jUzﬁdtJ det'B [V'O] dtj. (20)

From the last, we have
1

1 11
j 0 (x)dx < j X0 (x)dx j j t P dtdx.
0 0 0
Since f#1, we have

11
[ [t 'Bdtdx— ! 1
o = (-p)2-p) 25
Then, introducing
y=2-p

we come the proof of the inequality (18).
Thus, the proof of Theorem 5.1 is complete.

Now, we consider the Friedrichs extension of the operator A, and denote this
extension by the same notation, A4.
Theorem 5.2. Let 0 < # <2 and [ #1. Then, the operator 4 has a discrete spectrum.

Proof. Since, the operator A is positive definite, we introduce the energetic space H , of
the operator A with the following norm

1
HUH; = Ixﬂu’z(x)dx.
0

It is easy to show that H ,, as a set of functions, coincides with the space
7, ,(0.1).
BAT

Moreover, the norms of these two spaces are equivalent.
Let M be a set of functions U for which the norm in the energetic space HA S

bounded, i.e. ‘ < c , where c is a finite constant number.
A

Then, from (17) and (18) it follows that
! — 1 2 ﬂ 1”2
HUHWZZﬁ = g[u () +x (x)] x < const .

Then, by the Kondrashov embedding theorems for weighted classes [10], the set
M is compact in the space into which it is embedded, specifically:
a) in the space of continuous functions if 0 < f <1;

b) in the space L7 if #>1, where g € R suchthat g<2/(f—1).

These statements show that the set M is compact in the space L’ (0,1). Then,
based on Theorem 3 (§40) in [9], we conclude that the spectrum of the operator A is discrete, i.e.

| 18 \ 2025/Ne6 l
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the system of eigenfunctions of the operator A4 is a complete orthonormal system in L*(0,1) and
orthogonal in H ,:

1 1, i=J;
J' b () ()dx =1 (21)
! J 0, i#/;
0
1 -
I Pl (x)dx = {’1’ 1) (22)
7 l J 0,i#J;

where {Un}:: and {/1”}:: are the eigenfunctions and eigenvalues of the spectral problem

{(21),(22)}, respectively.
6. THE ORDER OF FOURIER COEFFICIENTS
In this section, we establish the convergence of some series that will be used throughout
the paper.

Let {Un}::
problem {(14),(15)}.
Lemma 6.1. Let [ € Wzl’ﬂ((),l) . Then, the following inequality holds:

and {ﬂ, }Z be the eigenfunctions and eigenvalues of the spectral

n

+00 1
AL <[ XL dx (23)
n=l 0

from which follows the convergence of the series on the left-hand side of (23), where

£, = [ fow,(xax.

Proof. By the definition of generalized eigenfunctions for any f € Wzl,ﬂ((),l) the following
equality holds

[xu, () f'(x)dx =4, f, . (24)

Let us consider the following non-negative expression:
1

2
[E% ( 1= fl.z),.’(x)] dx>0.
0 i=l1

From the last, we obtain

jxﬂf'z(x)dx - ZZn: fnj‘xﬂf'(x)u,'l (x)dx +

0

n 1 n 1
A L[ O+ 23 £, [ 3 0 (00 (x)dx 2 0.
i=l 0 i,j=1 0
i#j

Considering the last equality and (22), (24), we have
n 1
Y AL <[ L () dx.
i=1 0

Hence, passing to the limit as n — +00 we come to the inequality (23).

| 2025/Ne6 19 l
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Let us introduce the following notation

A" [ = ACA(A...(Af)..)).

m—times

Lemma 6.2. Let the following conditions be satisfied

(1) for all even m numbers f,Af,...,AzfeWzl,ﬂ(O,l);
e il
2) for all odd m numbers f, Af,..., A ? feWzl,ﬂ(O,l), A? fel’0,]).

Then, the following Bessel-type inequalities hold true:

o0 J‘l[(A”;f)']Z dx, forevenm,
2 < 0

DA (25)
n=l IO[A > fTdx, foroddm.
Proof. Assume that m is even natural number. Then, applying the rule of integration by
parts twice, from (24) we have
(A4f,0,)=4,1,=4,(f.0,). (26)

Replacing f by Af in (26), we obtain
(Azf’un) = ﬂ'n(Af’Un) = ﬂ“nzf;i
Similarly, one can show that the following equality is valid:

(A f0)=A:f.. (27)

m

Equation (27) shows that ﬂ,,?fn is the Fourier coefficient of the function Azf for
the system of the eigenfunctions of the spectral problem {(14) (15)}.

Since, Azf € W;’a (0,1) by applying Lemma 6.2, we have

+00 +00 1

D A= 2 A < [ A ) T
n=l1 n=l1 0

Thus, we have proved Lemma 6.2 for even m.

Now, we consider the case where m is odd.

In this case, from (27), we have

ml ml
(A 2 f’Unj:ﬁ“n2 f;1

m+1

Under the assumptions of Lemma 6.2, we have ATf e I’(0,1). Then, applying
Bessel's inequality, we obtain

+00

S (A f0,) = S At JTA fT dx.
n=1 n=1 0

The proof of Lemma 6.2 is complete.
Lemma 6.3 Let f € C([O,T],W;’ﬂ(o,l)), Af € C([O,T],LZ(O,I)). Then the following

series

ii,fff(t)
n=1
| 20 2025/Ne6 l
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converges absolutely and uniformly in [O,T].

Proof. By employing Parseval’s equality for the function Af (x,t), we have
+00 1
> A0 = [[Af 0] dx.
n=1 0

Since Af(x,t) € C([0,T],L*(0,1))based on Dini’s theorem, we have the proof of Lemma
6.3.

Lemma 6.4. Let f(x,t), Af (x,t) € C([O,T],Wzlﬁ (0,1)). Then the following series
PIAG
n=1

converges absolutely and uniformly in [O,T].

Proof. Since (Af,v,)=A f (t) and Af(x,t)e C([O0, T],Wzlﬁ(O, 1)), by applying

Lemma 6.1, we have
+00 1
S R A< j X[(Af) T dx < +o.
n=l1 0

Since Af (x,t) € C([O,T],Wl’zﬁ(O, 1)) based on Dini’s theorem, we have the proof

of Lemma 6.4.
7. EXISTENCE OF THE SOLUTION TO THE PROBLEM.
In this section, we will prove the existence and the uniqueness of the solution to the
Problem 4.1.
We consider two cases.

Case 1. 0< S <1.

Case2. 1< f<2.
First, we consider Case 1.

Let {Uk}:zl and {lk}w

k=1
problem {(14),(15)}. We will seek a solution to the problem in the following form

u(x,0) =Y u, (v, (x), (28)
[

for ke N.

Substituting (28) into equation (1) and introducing (f9Uk)L2(0 b= £, (t), from (1),

be the eigenfunctions and eigenvalues of the spectral

where u, () = (u’Uk)Lz(O,l)

we obtain
Ofu, () + Au, ()= f,(¢), keN, te(0,7T). (29)
Moreover, from the initial condition (10), we have
u,(0)=9¢,, keN, (30)

where O, = (% Uk)LZ(o,l)’

Using Lemma 2.1, it is easy to see that the solution to the problem {(29),(30)} has
the form
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w,(t) = . E,, (= A1%) + j(r —$)E,, [~ A, (t —5)*1f,(s)ds. (31)

0
Substituting (31) into (28), we obtain

+00

u(x,t):Z{gok al( -4t )

k=1

flemo) B[4 ) (o), @)

Applying the rule of integrating by parts, we rewrite (32) in the form

u(x,t) Z{(ok al( —At" ) aa+1( ﬂ‘kta)ﬁc(o)-i_

k=1

+'(i;(t -s)'E, ., [—ﬂ,k (1— z)a}fk’(z)dz}u,{ (x). (33)

Theorem 7.1. Let the following conditions be satisfied

1) 0< p<l;
2) 0, AgoeW;’ﬂ(O,l)
3) f,Af W;ﬂ (0,1) with respect to x;

4) afec([o 1], W, ,(0.1)).

Then, the function u(x,t) defined by (33) will be the classical solution to problem.

Proof. To prove Theorem 7.1, we will show the continuity of the functions af‘u and
0 ou
_{xﬁ il

3 3 } in Q. Formally differentiating (33) and considering (14), we obtain
x X

0

(3x( s 6”) Zz u, (v, (x),

or we can write the last, in the following form

Au = i Ay {wkEa,l (_lkta ) +E, (_lkta )fk (0) +
+j(t =8) By (-2 (1= 2)") fk’(z)dz}uk (x). (34)

From (34), we obtain

ull,, =3 2 {0 Eus (<) + B (~207) £, (0)+
+J(’_S)a E, .. [—ﬁk(f—z)a}fk'(Z)dZ} (35)

0

2 2,12, .2
Hence, applying (Cl+b+6’) S3(a +b" +c ), we have
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<3Zz; (e )+3szk (0)E] .. (~41")

‘ 2

+3zz3j ) E [ (t—z)“]f,;(z)dz

Applying Lemma 2.2 and Cauchy-Schwarz inequality, we have
2
t

RN J(=5Y By =2 (1=2)" | fi(2)az | <

0

fk'(z)‘dz < Czﬂkjdzjﬂz(z)dz <

<C*A Tj z)dz.

Considering the last inequality and boundedness of the Mittag-Leffler function, we
obtain

+00 +o0 T
HA“HZ <C Z/’I’k¢k +C, 2, 4 £ (0) +sz/1kffk'2 (s)ds, (36)
k=1 k=1 0

where q, C2 and Q are the constants not depend on &

The convergence of the two series on the right-hand side of (36) follows from
Lemma 6.2, and the convergence of the third series follows from Lemma 6.4, with the subsequent
application of the theorem on term-by-term integration of uniformly converging series.
Consequently, we have obtained that

from which by Kondrashov embedding theorem for weighted classes [10], we have
Au e C[O,l]. The continuity of Au with respect to ¢ follows from the uniform convergence of the
series

2
<
oS const

S Al
k=1
in [0,T]. Thus, Au e C(ﬁ).

Theorem 7.2. Let the following conditions be satisfied:
1) l<p<2

2)  @eW,,(0,1), Ape L*(0,1);
3)  fec([0.T]:w,,(0.1)), Af e C([0.T].L7(0.1))

2 af c([0.7], W, (0,1)).
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Then, the function u(x,t) defined by (32) will be a function such that
2 a 2
Au e C([O,T], L (0,1)) and o' u e C([O,T], L (0,1)).
Proof. Using (32), we have

+00
2 _ 2.2
”A }01) ; ﬂk u (t)
It is easy to verify that the following estimate holds true:

+00 +00 +o0 T
vy SCLAG +CY AL (0)+ C Y2 17 (s)ds,
k=1 k=1 k=1 0

|4

where C4,C5 and C6 are constants not depend on £ .

The convergence of the two series follows from the conditions Theorem 7.2 and
Lemmas 6.2 and 6.3. Additionally, the convergence of the third series follows from Lemma 6.3.
The uniqueness of the solution can be proved using the completeness property of

o 2
the system of eigenfunctions {Uk (x)}‘k_l in 27(0,1).
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